Using the solution casting method, a novel biodegradable thermoplastic arrowroot (Maranta arundinacea) starch (TPAS) films containing arrowroot fiber (AF) at different concentrations (0, 2, 4, 6, 8, and 10 wt%) were developed and characterized in terms of thermal, antibacterial activity, water vapor permeability (WVP), biodegradability, and light transmittance properties. The TPAS/AF-10 biocomposite film revealed a higher degradation temperature (313.02 °C) than other biocomposite films, indicating better thermal stability.
View Article and Find Full Text PDFThis research is driven by stringent environmental legislation requiring the consumption and use of environmentally friendly materials. In this context, this paper is concerned with the development and characterization of thermoplastic arrowroot starch (TPAS) based biocomposite films by incorporating arrowroot fiber (AF) (0-10%) into a glycerol plasticized matrix by using the solution casting method. Developed TPAS/AF composite films were investigated, such as physical, morphological (FESEM), tensile, and tear strength characteristics.
View Article and Find Full Text PDFThis research was performed to evaluate the physical, mechanical, and morphological properties of treated sugar palm fiber (SPF)/glass fiber (GF) reinforced poly(lactic acid) (PLA) hybrid composites. Morphological investigations of tensile and flexural fractured samples of composites were conducted with the help of scanning electron microscopy (SEM). Alkaline and benzoyl chloride (BC) treatments of SPFs were performed.
View Article and Find Full Text PDFIncreasing scientific interest has occurred concerning the utilization of natural fiber-enhanced hybrid composites that incorporate one or more types of natural enhancement. Annual natural fiber production is estimated to be 1,783,965 × 103 tons/year. Extensive studies have been conducted in the domains of natural/synthetic as well as natural/natural hybrid composites.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2021
Developments in the synthesis and scalable manufacturing of carbon nanomaterials like carbon nanotubes (CNTs) have been widely used in the polymer material industry over the last few decades, resulting in a series of fascinating multifunctional composites used in fields ranging from portable electronic devices, entertainment and sports to the military, aerospace, and automotive sectors. CNTs offer good thermal and electrical properties, as well as a low density and a high Young's modulus, making them suitable nanofillers for polymer composites. As mechanical reinforcements for structural applications CNTs are unique due to their nano-dimensions and size, as well as their incredible strength.
View Article and Find Full Text PDFCOVID-19 global pandemic, originated from Wuhan, resulted in a massive increase in the output of polypropylene (PP)-based personal protective equipment (PPE) for healthcare workers. The continuous demand of PPE across the world caused the PP based plastic wastes accumulation. Some alternative approaches that have been practiced apart from collecting the plastic waste in the landfills are incineration approach and open burning.
View Article and Find Full Text PDFThis research was set out to explore the development of arrowroot starch (AS) films using glycerol (G) as plasticizer at the ratio of 15, 30, and 45% (w/w, starch basis) using solution casting technique. The developed films were analyzed in terms of physical, structural, mechanical, thermal, environmental, and barrier properties. The incorporation of glycerol to AS film-making solution reduced the brittleness and fragility of films.
View Article and Find Full Text PDFIn the field of hybrid natural fiber polymer composites, there has been a recent surge in research and innovation for structural applications. To expand the strengths and applications of this category of materials, significant effort was put into improving their mechanical properties. Hybridization is a designed technique for fiber-reinforced composite materials that involves combining two or more fibers of different groups within a single matrix to manipulate the desired properties.
View Article and Find Full Text PDFNatural fibers have attracted great attention from industrial players and researchers for the exploitation of polymer composites because of their "greener" nature and contribution to sustainable practice. Various industries have shifted toward sustainable technology in order to improve the balance between the environment and social and economic concerns. This manuscript aims to provide a brief review of the development of the foremost natural fiber-reinforced polymer composite (NFRPC) product designs and their applications.
View Article and Find Full Text PDFSlow pyrolysis using a batch reactor at 450 °C was applied to the polypropylene (PP) powder derived from Coronavirus Disease 2019 (COVID-19) isolation gown waste to yield char briquettes, using sugar palm starch (SPS) and a manual hydraulic press. These studies are significant because of reductions in plastic waste from the preparation of barbecue coal due to environmental sustainability. The results presented here include the physical, morphological, thermal, combustion, and mechanical properties of char when reinforced with various percentages of SPS loadings (0, 10, 20, 30, and 40%), which act as a matrix/binder to produce char/sugar palm starch (C/SPS) composites.
View Article and Find Full Text PDFResearchers and companies have increasingly been drawn to biodegradable polymers and composites because of their environmental resilience, eco-friendliness, and suitability for a range of applications. For various uses, biodegradable fabrics use biodegradable polymers or natural fibers as reinforcement. Many approaches have been taken to achieve better compatibility for tailored and improved material properties.
View Article and Find Full Text PDFIn this review, the challenges faced by woven kenaf thermoset polymer composites in Malaysia were addressed with respect to three major aspects: woven kenaf reinforcement quality, Malaysian citizen awareness of woven kenaf thermoset composite products, and government supports. Kenaf plantations were introduced in Malaysia in the last two decades, but have generally not produced much kenaf composite product that has been widely accepted by the public. However, woven kenaf fiber enhances the thermoset composites to a similar degree or better than other natural fibers, especially with respect to impact resistance.
View Article and Find Full Text PDFA novel class of carbon nanotube (CNT)-based nanomaterials has been surging since 1991 due to their noticeable mechanical and electrical properties, as well as their good electron transport properties. This is evidence that the development of CNT-reinforced polymer composites could contribute in expanding many areas of use, from energy-related devices to structural components. As a promising material with a wide range of applications, their poor solubility in aqueous and organic solvents has hindered the utilizations of CNTs.
View Article and Find Full Text PDFEven though natural fiber reinforced polymer composites (NFRPCs) have been widely used in automotive and building industries, there is still a room to promote them to high-level structural applications such as primary structural component specifically for bullet proof and ballistic applications. The promising performance of Kevlar fabrics and aramid had widely implemented in numerous ballistic and bullet proof applications including for bullet proof helmets, vest, and other armor parts provides an acceptable range of protection to soldiers. However, disposal of used Kevlar products would affect the disruption of the ecosystem and pollutes the environment.
View Article and Find Full Text PDFPlant fibers have become a highly sought-after material in the recent days as a result of raising environmental awareness and the realization of harmful effects imposed by synthetic fibers. Natural plant fibers have been widely used as fillers in fabricating plant-fibers-reinforced polymer composites. However, owing to the completely opposite nature of the plant fibers and polymer matrix, treatment is often required to enhance the compatibility between these two materials.
View Article and Find Full Text PDFPolymers (Basel)
February 2021
Over the last decade, the progressive application of natural fibres in polymer composites has had a major effect in alleviating environmental impacts. Recently, there is a growing interest in the development of green materials in a woven form by utilising natural fibres from lignocellulosic materials for many applications such as structural, non-structural composites, household utilities, automobile parts, aerospace components, flooring, and ballistic materials. Woven materials are one of the most promising materials for substituting or hybridising with synthetic polymeric materials in the production of natural fibre polymer composites (NFPCs).
View Article and Find Full Text PDFFood packaging has seen a growth in the use of materials derived from renewable resources such as poly(lactic acid) (PLA). However, the initial costs to produce bioplastics are typically high. Tropical fruit waste as naturally sourced fibres, such as jackfruit skin, can be used as a cost-reducing filler for PLA.
View Article and Find Full Text PDFRecently, many scientists and polymer engineers have been working on eco-friendly materials for starch-based food packaging purposes, which are based on biopolymers, due to the health and environmental issues caused by the non-biodegradable food packaging. However, to maintain food freshness and quality, it is necessary to choose the correct materials and packaging technologies. On the other hand, the starch-based film's biggest flaws are high permeability to water vapor transfer and the ease of spoilage by bacteria and fungi.
View Article and Find Full Text PDFIn this study, a mixture of thermoplastic polybutylene succinate (PBS), tapioca starch, glycerol and empty fruit bunch fiber was prepared by a melt compounding method using an industrial extruder. Generally, insertion of starch/glycerol has provided better strength performance, but worse thermal and water uptake to all specimens. The effect of fiber loading on mechanical, morphological, thermal and physical properties was studied in focus.
View Article and Find Full Text PDFIn this study, it focused on empty fruit brunch (EFB) fibres reinforcement in polybutylene succinate (PBS) with modified tapioca starch by using hot press technique for the use of agricultural mulch film. Mechanical, morphological and thermal properties were studied. Mechanical analysis showed decreased in values of modulus strength for both tensile and flexural testing for fibres insertion.
View Article and Find Full Text PDFThe effects of different fabric materials namely weave designs (plain and satin) and fabric counts (5 × 5 and 6 × 6) on the properties of laminated woven kenaf/carbon fibre reinforced epoxy hybrid composites were evaluated. The hybrid composites were fabricated from two types of fabric, i.e.
View Article and Find Full Text PDFIn this study, polybutylene succinate (PBS) was blended with five types of modified tapioca starch to investigate the effect of modified tapioca starch in PBS blends for food packaging by identifying its properties. Tensile and flexural properties of blends found deteriorated for insertion of starch. This is due to poor interface, higher void contents and hydrolytic degradation of hydrophilic starch.
View Article and Find Full Text PDFLarge amount of sodium hydroxide (NaOH) is consumed to remove the protein content in chitin biomass during deproteinization. However, excessive NaOH concentration used might lead to the reduction of cost effectiveness during chitin extraction. Hence, the present study aimed to extract and evaluate the physicochemical properties of chitin and chitosan isolated from superworm (Zophobas morio) larvae using 0.
View Article and Find Full Text PDF