This study develops a thermal homogenization model for an aluminum honeycomb panel using the representative volume element (RVE) concept, considering the orthotropic nature of the structure. The RVE thermal homogenization method is a numerical approach for analyzing heterogeneous materials. It employs a constitutive model based on RVE performance to represent thermal behavior.
View Article and Find Full Text PDFMicrochannel artificial lungs may provide highly efficient, long-term respiratory support, but a robust predictive oxygen transfer (VO2) model is needed to better design them. To meet this need, we first investigated the predictive accuracy of Mikic, Benn, and Drinker's advancing front (AF) oxygen transfer theory by applying it to previous microchannel lung studies. Here, the model that included membrane resistance showed no bias toward overprediction or underprediction of VO2 (median error: -1.
View Article and Find Full Text PDFCardiovasc Revasc Med
April 2019
Objective: The objective of this preliminary investigation is to determine if there is a relation between the biological levels of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinase (TIMP) and the elastic moduli of the ascending aortic wall in patients with ascending thoracic aortic aneurysms (ATAA).
Methods: Circumferential specimens from twelve patients with ATAA were obtained from the greater curvature and their tensile properties (maximum elastic modulus) were tested uniaxially. The levels of MMP1, 2, 3, 8, and 9 as well as TIMP1 and 2 were determined in these aortic wall specimens using MMP/TIMP antibodies array.
The endothelial cells lining the capillaries supplying the brain with oxygen and nutrients form a formidable barrier known as the blood-brain barrier (BBB), which exhibits selective permeability to small drug molecules and virtually impermeable to macromolecular therapeutics. Current in vitro BBB models fail to replicate this restrictive behavior due to poor integration of the endothelial cells with supporting cells (pericytes and astrocytes) following the correct anatomical organization observed in vivo. We report the coculture of mouse brain microvascular endothelial cells (b.
View Article and Find Full Text PDFBackground: We reviewed the mechanics involved in the aneurysmal dilatation of the false lumen (FL) in type B aortic dissection and the experimental and clinical evidence supporting the proposition that the main agent for this dilatation is a differential of pressure between the false and true lumena. This difference in pressure is the consequence of a restricted outflow of the FL. Our aim was to study the relationship between the size of a septectomy that increases the outflow of the FL and its effect on the values of the differential of pressure.
View Article and Find Full Text PDFObjective: This study was conducted to determine the differences in the diameter of the thoracic aorta when measured from electrocardiographic (ECG)-gated and nongated computed tomography (CT) angiography. Another aim was to define the difference in the aortic diameter when it is measured at peak systole and end diastole in ECG-gated scans.
Methods: The gated and nongated CT angiograms of 27 patients (mean age, 58 ± 16 standard deviation [SD] years) obtained on a 256-slice multidetector CT scanner were used.
Current thoracic artificial lungs (TALs) have blood flow impedances greater than the natural lungs, which can result in abnormal pulmonary hemodynamics. This study investigated the impedance and gas transfer performance of a compliant TAL (cTAL). Fluid-structure interaction analysis was performed using ADINA (ADINA R&D Inc.
View Article and Find Full Text PDFA numerical study was conducted to analyze fluid flow within hollow fiber membranes of the artificial lungs. The hollow fiber bundle was approximated using a porous media model. In addition, the transport equations were solved using the finite-element formulation based on the Galerkin method of weighted residuals.
View Article and Find Full Text PDFCurrent thoracic artificial lungs (TALs) possess blood flow impedances greater than the natural lungs, resulting in abnormal pulmonary hemodynamics when implanted. This study sought to reduce TAL impedance using computational fluid dynamics (CFD). CFD was performed on TAL models with inlet and outlet expansion and contraction angles, θ, of 15°, 45°, and 90°.
View Article and Find Full Text PDFPulsatile flow across two circular cylinders with different geometric arrangements is studied experimentally using the particle image velocimetry method and numerically using the finite element method. This investigation is motivated the need to optimize gas transfer and fluid mechanical impedance for a total artificial lung, in which the right heart pumps blood across a bundle of hollow microfibers. Vortex formation was found to occur at lower Reynolds numbers in pulsatile flow than in steady flow, and the vortex structure depends strongly on the geometric arrangement of the cylinders and on the Reynolds and Stokes numbers.
View Article and Find Full Text PDFObjective: The purpose of this study is to provide measurements of the elastic modulus of the aortic wall of ascending thoracic aortic aneurysms for different ranges of pressure (physiologic, hypertensive). In addition, pre-failure stress, taken as the peak stress obtained before specimen failure, was recorded for each test.
Methods: Ninety-seven aortic samples freshly excised from 13 patients with ascending thoracic aortic aneurysms were obtained from greater and lesser curvatures and tested uniaxially in circumferential and longitudinal orientations.
Poly(amidoamine) (PAMAM) dendrimers are a family of water-soluble polymers with a characteristic tree-like branching architecture and a large number of surface groups, which have been used to immobilize a variety of therapeutic molecules for targeted drug delivery. Earlier studies showed that small cationic PAMAM-NH2 and selected anionic PAMAM-COOH dendrimers permeate across in vitro models of the small intestinal epithelium by paracellular and transcellular transport mechanisms. The focus of this research is to mathematically calculate the effect of cationic, anionic, and neutral PAMAM dendrimers on the porosity of epithelial tight junctions as a function of dendrimers concentration, incubation time, generation number, and charge density.
View Article and Find Full Text PDFTurbulent pulsatile flow and wall mechanics were studied numerically in an axisymmetric three-layered wall model of a descending aorta. The transport equations were solved using the finite element formulation based on the Galerkin method of weighted residuals. A fully-coupled fluid-structure interaction (FSI) analysis was utilized in this investigation.
View Article and Find Full Text PDFTensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate.
View Article and Find Full Text PDFBackground: Follow-up mortality is high in patients with type B aortic dissection (TB-AD) approaching one in four patients at 3 years. A predictor of increased mortality is partial thrombosis of the false lumen which may occlude distal tears. The hemodynamic consequences of differing tear size, location, and patency within the false lumen is largely unknown.
View Article and Find Full Text PDFThe numerical models of abdominal aortic aneurysm (AAA) in use do not take into account the non-Newtonian behavior of blood and the development of local turbulence. This study examines the influence of pulsatile, turbulent, non-Newtonian flow on fluid shear stresses and pressure changes under rest and exercise conditions. We numerically analyzed pulsatile turbulent flow, using simulated physiological rest and exercise waveforms, in axisymmetric-rigid aortic aneurysm models (AAMs).
View Article and Find Full Text PDFAnn N Y Acad Sci
November 2006
The growth of aneurysms and eventually their likelihood of rupture depend on the determination of the stress and strain within the aneurysm wall and the exact reproduction of its geometry. A numerical model is developed to analyze pulsatile flow in abdominal aortic aneurysm (AAA) models using real physiological resting and exercise waveforms. Both laminar and turbulent flows are considered.
View Article and Find Full Text PDFPulsatile flow in an axisymmetric rigid-walled model of an abdominal aorta aneurysm was analyzed numerically for various aneurysm dilations using physiologically realistic resting waveform at time-averaged Reynolds number of 300 and peak Reynolds number of 1607. Discretization of the governing equations was achieved using a finite element scheme based on the Galerkin method of weighted residuals. Comparisons with previously published work on the basis of special cases were performed and found to be in excellent agreement.
View Article and Find Full Text PDF