Atrial fibrillation (AF) is the most common heart arrhythmia, linked to a five-fold increase in stroke risk. The left atrial appendage (LAA), prone to blood stasis, is a common thrombus formation site in AF patients. The LAA can be classified into four morphologies: broccoli, cactus, chicken wing and windsock.
View Article and Find Full Text PDFAccurate cell-level active tension modeling for cardiomyocytes is critical to understanding cardiac functionality on a subject-specific basis. However, cell-level models in the literature fail to account for viscoelasticity and inter-subject variations in active tension, which are relevant to disease diagnostics and drug screening, e.g.
View Article and Find Full Text PDFIn this study a frequency scaling law for 3D anatomically representative supravalvular aortic stenosis (SVAS) cases is proposed. The law is uncovered for stethoscopy's preferred auscultation range (70-120 Hz). LES simulations are performed on the CFD solver Fluent, leveraging Simulia's Living Heart Human Model (LHHM), modified to feature hourglass stenoses that range between 30 to 80 percent (mild to severe) in addition to the descending aorta.
View Article and Find Full Text PDFCardiotoxicity limits the use of anthracyclines as potent chemotherapeutics. We employ classical molecular dynamics to explore anthracycline interactions with a realistic myocardial membrane and compare to an ideal membrane widely used in literature. The interaction of these two membranes with four anthracyclines; doxorubicin, epirubicin, daunorubicin, and idarubicin are studied.
View Article and Find Full Text PDFIn this paper, we identify a new (acoustic) frequency-stenosis relation whose frequencies lie within the recommended auscultation threshold of stethoscopy (< 120 Hz). We show that this relation can be used to extend the application of phonoangiography (quantifying the degree of stenosis from bruits) to widely accessible stethoscopes. The relation is successfully identified from an analysis restricted to the acoustic signature of the von Karman vortex street, which we automatically single out by means of a metric we propose that is based on an area-weighted average of the Q-criterion for the post-stenotic region.
View Article and Find Full Text PDFThis study explores the negative impact of cyclophosphamide (CP) on cardiac contractility by specifically examining its effect on the active and passive tension of the cardiac muscle in-vitro and revealing the mechanism through which CP induces myocardial insult in-vivo. In young male Sprague-Dawley rats, cardiac toxicity was induced by a single intraperitoneal injection of CP (150 mg/kg body weight). Axial heart tissue slices were electrically stimulated, and the total isometric contraction force was measured at varying pretension levels.
View Article and Find Full Text PDFHydrogels are nowadays widely used in various biomedical applications, and show great potential for the making of devices such as biosensors, drug- delivery vectors, carriers, or matrices for cell cultures in tissue engineering, etc. In these applications, due to the irregular complex surface of the human body or its organs/structures, the devices are often designed with a small thickness, and are required to be flexible when attached to biological surfaces. The devices will deform as driven by human motion and under external loading.
View Article and Find Full Text PDFPulmonary hypertension (PH), a chronic and complex medical condition affecting 1% of the global population, requires clinical evaluation of right ventricular maladaptation patterns under various conditions. A particular challenge for clinicians is a proper quantitative assessment of the right ventricle (RV) owing to its intimate coupling to the left ventricle (LV). We, thus, proposed a patient-specific computational approach to simulate PH caused by left heart disease and its main adverse functional and structural effects on the whole heart.
View Article and Find Full Text PDFProc Inst Mech Eng H
January 2020
There is growing interest to better understand drug-induced cardiovascular complications and to predict undesirable side effects at as early a stage in the drug development process as possible. The purpose of this paper is to investigate computationally the influence of sodium ion channel blockage on cardiac electromechanics. To do so, we implement a myofiber orientation dependent passive stress model (Holzapfel-Ogden) in the multiphysics solver Chaste to simulate an imaged physiological model of the human ventricles.
View Article and Find Full Text PDFThe present case study compares transmission Kikuchi diffraction (TKD) with electron back-scattering diffraction (EBSD) on the same area of an electron transparent cross-section of a twinning induced plasticity steel. While TKD expectedly provides better clarity of internal defect substructures in the band contrast map, EBSD returns orientation data that approaches the quality of the TKD map. This was rationalised by Monte Carlo simulations of the electron energy spreads, which showed that due to the geometry-based compromises associated with adapting a conventional EBSD detector (which is off-axis with respect to the incident electron beam) to TKD, a broadening in the electron energy distribution of the forward-scattered electrons collected on the detector phosphor screen, is unavoidable.
View Article and Find Full Text PDF