UGT2B10 is a phase II drug metabolizing enzyme with limited information on its role in the metabolism of drugs, especially in the pediatric hematopoietic stem cell transplantation setting. Previously, we investigated UGT2B10's role through in silico analyses and prioritized acetaminophen (APAP), lorazepam (LOR), mycophenolic acid (MPA), and voriconazole N-oxide (VCZ N-oxide) for in vitro investigations. In this report, we present in vitro screening of these candidates and of voriconazole (VCZ) to assess their potential to be substrates and/or inhibitors of UGT2B10.
View Article and Find Full Text PDFBone Marrow Transplant
December 2024
Busulfan (Bu) is an important component of many conditioning regimens for allogeneic hematopoietic cell transplantation. The therapeutic window of Bu is well characterized, with strong associations between Bu exposure and the clinical outcome in adults (strongest evidence in myelo-ablative setting) and children (all settings). We provide an overview of the literature on Bu as well as a step-by-step guide to the implementation of Bu therapeutic drug monitoring (TDM).
View Article and Find Full Text PDFDespite the progress in cure rates for pediatric cancers, several challenges remain, such as the management of diseases with poor prognosis. The efficacy of intensified chemotherapies is also accompanied by increased risks of severe acute and chronic toxicities. Thus, therapies specifically targeting tumor cells, or inhibiting oncogenic molecular aberrations, could provide more effective and less toxic treatments for pediatric cancers.
View Article and Find Full Text PDFBackground: Sinusoidal occlusion syndrome (SOS) is a potentially severe complication following hematopoietic stem cell transplantation (HSCT) in pediatric patients. Treatment related risk factors such as intensity of conditioning, hepatotoxic co-medication and patient related factors such as genetic variants predispose individuals to develop SOS. The variant allele for SNP rs17146905 in UDP-glucuronosyl transferase 2B10 (UGT2B10) gene was correlated with the occurrence of SOS in an exome-wide association study.
View Article and Find Full Text PDFBackground: Glutathione S-transferases (GSTs) are phase II metabolic enzymes crucial for the metabolism of electrophilic drugs. Additionally, several GST isoforms are involved in protein- protein interaction with mitogen-activated protein kinases (MAPKs), modulating apoptosis pathways.
Methods: To assess the potential change of enzymatic activity, we performed a GST enzyme assay with human recombinant GSTM1 in the presence and absence of MAPK8.
Total-body irradiation (TBI) based conditioning prior to allogeneic hematopoietic stem cell transplantation (HSCT) is generally regarded as the gold-standard for children >4 years of age with acute lymphoblastic leukaemia (ALL). Retrospective studies in the 1990's suggested better survival with irradiation, confirmed in a small randomised, prospective study in the early 2000's. Most recently, this was reconfirmed by the early results of the large, randomised, international, phase III FORUM study published in 2020.
View Article and Find Full Text PDFBusulfan (Bu) is a common component of conditioning regimens before hematopoietic stem cell transplantation (HSCT) and is known for high interpatient pharmacokinetic (PK) variability. This study aimed to develop and externally validate a multicentric, population PK (PopPK) model for intravenous Bu in pediatric patients before HSCT to first study the influence of glutathione-s-transferase A1 (GSTA1) polymorphisms on Bu's PK in a large multicentric pediatric population while accounting for fludarabine (Flu) coadministration and, second, to establish an individualized, model-based, first-dose recommendation for intravenous Bu that can be widely used in pediatric patients. The model was built using data from 302 patients from five transplantation centers who received a Bu-based conditioning regimen.
View Article and Find Full Text PDFGSTA1 encodes a member of a family of enzymes that function to add glutathione to target electrophilic compounds, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTA1 has several functional SNPs within its promoter region that are responsible for a change in its expression by altering promoter function. This study aims to investigate distributions of GSTA1 promoter haplotypes across different human populations and to assess their impact on the expression of GSTA1.
View Article and Find Full Text PDF