Accurate and continuous blood glucose monitoring is essential for effective diabetes management, yet traditional finger pricking methods are often inconvenient and painful. To address this issue, photoplethysmography (PPG) presents a promising non-invasive alternative for estimating blood glucose levels. In this study, we propose an innovative 1-second signal segmentation method and evaluate the performance of three advanced deep learning models using a novel dataset to estimate blood glucose levels from PPG signals.
View Article and Find Full Text PDFThis article presents a cascade controller for the quadrotor to track the desired trajectory effectively. Unlike previous approaches, this method avoids simplification and linearization assumptions, making it applicable in a wider range of scenarios. A novel linear quadratic tracking method is utilized, which takes into account both process noise and measurement noise while maintaining a model-free nature.
View Article and Find Full Text PDFTo provide deeper immersion for the user in the virtual environments, both force and torque feedbacks are required rather than the mere use of visual and auditory ones. In this paper, we develop a novel propeller-based Ungrounded Handheld Haptic Device (UHHD) that delivers both force and torque feedbacks in one device to help the user experience a realistic sensation of immersion in a three-dimensional (3D) space. The proposed UHHD uses only a pair of propellers and a set of sliders to continuously generate the desired force and torque feedbacks up to 15N and 1N.
View Article and Find Full Text PDFPediatric Sleep Apnea-Hypopnea (SAH) presents a significant health challenge, particularly in diagnostic contexts, where conventional Polysomnography (PSG) testing, although effective, can be distressing for children. Addressing this, our research proposes a less invasive method to assess pediatric SAH severity by analyzing blood oxygen saturation (SpO2) signals. We adopted two advanced deep learning architectures, namely ResNet-based and attention-augmented hybrid CNN-BiGRU models, to process SpO2 signals in a one-dimensional (1D) format for Apnea-Hypopnea Index (AHI) estimation in pediatric subjects.
View Article and Find Full Text PDFWith the recent advances in autonomous vehicles, there is an increasing need for sensors that can help monitor tire-road conditions and the forces that are applied to the tire. The footprint area of a tire that makes direct contact with the road surface, known as the contact patch, is a key parameter for determining a vehicle's effectiveness in accelerating, braking, and steering at various velocities. Road unevenness from features such as potholes and cracks results in large fluctuations in the contact patch surface area.
View Article and Find Full Text PDFTo improve the payload capacity and maneuverability of a Differentially-Driven Wheeled Robot (DDWR), a wheeled vehicle, which is called trailer, is connected to the DDWR. In all of the previous studies of DDWRs with a trailer, the robot wheels are subject to pure rolling constraints. However, when these multibody systems move with high velocities/accelerations, transfer a heavy payload, or travel on a slippery surface, they experience slipping and/or skidding.
View Article and Find Full Text PDFThis research introduces a new exoskeleton-type rehabilitation robot, which can be used in lower limb rehabilitation therapy for post-stroke patients. A novel design of a typical knee and ankle rehabilitation robot is proposed. The kinematic and dynamic models of the knee and ankle rehabilitation robot are derived.
View Article and Find Full Text PDFHuman gait is the result of a complex and fascinating cooperation between different joints and segments in the lower extremity. This study aims at investigating the existence of this cooperation or the so-called synergy between the shank motion and the ankle motion. One potential use of this synergy is to develop the high level controllers for active foot prostheses/orthoses.
View Article and Find Full Text PDF