Publications by authors named "Khalid-Hamid El Hachimi"

Biallelic variants in the SPG11 gene account for the most common form of autosomal recessive hereditary spastic paraplegia characterized by motor and cognitive impairment, with currently no therapeutic option. We previously observed in a Spg11 knockout mouse that neurodegeneration is associated with accumulation of gangliosides in lysosomes. To test whether a substrate reduction therapy could be a therapeutic option, we downregulated the key enzyme involved in ganglioside biosynthesis using an AAV-PHP.

View Article and Find Full Text PDF
Article Synopsis
  • A study involving 20 COVID-19 cases identified cerebral microangiopathy in six patients, marked by changes in white matter and small artery diseases as seen on MRI.
  • The condition featured perivascular alterations such as vacuolization, macrophage clusters, and large axonal swellings, suggesting blood-brain barrier disruption without evidence of direct viral presence in the brain.
  • Detection of the SARS-CoV-2 spike protein in brain endothelial cells, particularly within the Golgi apparatus, indicates a unique interaction that might affect vascular permeability and contribute to long-term neurological effects of COVID-19.
View Article and Find Full Text PDF

Pharmacological targeting of neuroinflammation in distinct models of genetically mediated disorders of the central nervous system (CNS) has been shown to attenuate disease outcome significantly. These include mouse models mimicking distinct subtypes of neuronal ceroid lipofuscinoses (NCL, CLN diseases) as well as hereditary spastic paraplegia type 2 (HSP/SPG2). We here show in a model of another, complicated HSP form (SPG11) that there is neuroinflammation in distinct compartments of the diseased CNS.

View Article and Find Full Text PDF

Background: The cellular and molecular alterations associated with synapse and neuron loss in Alzheimer's disease (AD) remain unclear. In transgenic mouse models that express mutations responsible for familial AD, neuronal and synaptic losses occur in populations that accumulate fibrillar amyloid-β 42 (Aβ42) intracellularly.

Objective: We aimed to study the subcellular localization of these fibrillar accumulations and whether such intraneuronal assemblies could be observed in the human pathology.

View Article and Find Full Text PDF

Mutations in , leading to loss of spatacsin function, impair the formation of membrane tubules in lysosomes and cause lysosomal lipid accumulation. However, the full nature of lipids accumulating in lysosomes and the physiological consequences of such accumulation are unknown. Here we show that loss of spatacsin inhibits the formation of tubules on lysosomes and prevents the clearance of cholesterol from this subcellular compartment.

View Article and Find Full Text PDF

Hereditary spastic paraplegias (HSPs) are clinically and genetically heterogeneous human neurodegenerative diseases. Amongst the identified genetic causes, mutations in genes encoding motor proteins such as kinesins have been involved in various HSP clinical isoforms. Mutations in KIF1C are responsible for autosomal recessive spastic paraplegia type 58 (SPG58) and spastic ataxia 2 (SPAX2).

View Article and Find Full Text PDF

Lysosome membrane recycling occurs at the end of the autophagic pathway and requires proteins that are mostly encoded by genes mutated in neurodegenerative diseases. However, its implication in neuronal death is still unclear. Here, we show that spatacsin, which is required for lysosome recycling and whose loss of function leads to hereditary spastic paraplegia 11 (SPG11), promotes clearance of gangliosides from lysosomes in mouse and human SPG11 models.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is associated with a progressive loss of synapses and neurons. Studies in animal models indicate that morphological alterations of dendritic spines precede synapse loss, increasing the proportion of large and short ("stubby") spines. Whether similar alterations occur in human patients, and what their functional consequences could be, is not known.

View Article and Find Full Text PDF

Mutations in SPG11 account for the most common form of autosomal recessive hereditary spastic paraplegia (HSP), characterized by a gait disorder associated with various brain alterations. Mutations in the same gene are also responsible for rare forms of Charcot-Marie-Tooth (CMT) disease and progressive juvenile-onset amyotrophic lateral sclerosis (ALS). To elucidate the physiopathological mechanisms underlying these human pathologies, we disrupted the Spg11 gene in mice by inserting stop codons in exon 32, mimicking the most frequent mutations found in patients.

View Article and Find Full Text PDF

Objective: The aim of this study was to identify the causal gene in a consanguineous Moroccan family with temporo-occipital polymicrogyria, psychiatric manifestations, and epilepsy, previously mapped to the 6q16-q22 region.

Methods: We used exome sequencing and analyzed candidate variants in the 6q16-q22 locus, as well as a rescue assay in Fig4-null mouse fibroblasts and immunohistochemistry of Fig4-null mouse brains.

Results: A homozygous missense mutation (p.

View Article and Find Full Text PDF

Truncating mutations in the SPG11 and SPG15 genes cause complicated spastic paraplegia, severe neurological conditions due to loss of the functions of spatacsin and spastizin, respectively. We developed specific polyclonal anti-spatacsin (SPG11) and anti-spastizin (SPG15) antisera, which we then used to explore the intracellular and tissue localizations of these proteins. We observed expression of both proteins in human and rat central nervous system, which was particularly strong in cortical and spinal motor neurons as well as in retina.

View Article and Find Full Text PDF

In transgenic mice expressing human mutant beta-amyloid precursor protein (APP) and mutant presenilin-1 (PS1), Abeta antibodies labeled granules, about 1 microm in diameter, in the perikaryon of neurons clustered in the isocortex, hippocampus, amygdala, thalamus, and brainstem. The granules were present before the onset of Abeta deposits; their number increased up to 9 months and decreased in 15-month-old animals. They were immunostained by antibodies against Abeta 40, Abeta 42, and APP C-terminal region.

View Article and Find Full Text PDF

A 46-year-old patient developed amyotrophic lateral sclerosis (ALS) characterized by rapid progression. She needed respiratory assistance after a course of 9 months. She died 4.

View Article and Find Full Text PDF