In the most recent electronic and electric sectors, ceramic-polymer nanocomposites with high dielectric permittivity and energy density are gaining popularity. However, the main obstacle to improving the energy density in flexible nanocomposites, besides the size and morphology of the ceramic filler, is the low interfacial compatibility between the ceramic and the polymer. This paper presents an alternative solution to improve the dielectric permittivity and energy storage properties for electronic applications.
View Article and Find Full Text PDFPrinting graphene-based nanomaterials on flexible substrates has become a burgeoning platform for next-generation technologies. Combining graphene and nanoparticles to create hybrid nanomaterials has been proven to boost device performance, thanks to their complementary physical and chemical properties. However, high growth temperatures and long processing times are often required to produce high-quality graphene-based nanocomposites.
View Article and Find Full Text PDFNi thin films with different thicknesses were grown on a GaAs substrate using the magnetron sputtering technique followed by in situ X-ray diffraction (XRD) annealing in order to study the solid-state reaction between Ni and GaAs substrate. The thickness dependence on the formation of the intermetallic phases was investigated using in situ and ex situ XRD, pole figures, and atom probe tomography (APT). The results indicate that the 20 nm-thick Ni film exhibits an epitaxial relation with the GaAs substrate, which is (001) Ni//(001) GaAs and [111] Ni//[110] GaAs after deposition.
View Article and Find Full Text PDFTungsten disulfide nanosheets were successfully prepared by one-step chemical vapor deposition using tungsten oxide and thiourea in an inert gas environment. The size of the obtained nanosheets was subsequently reduced down to below 20 nm in width and 150 nm in length using high-energy ball milling, followed by 0.5 and 1 wt% graphene loading.
View Article and Find Full Text PDFFor a long time, secondary ion mass spectrometry (SIMS) was the only technique allowing impurity concentrations below 1 at% to be precisely measured in a sample with a depth resolution of few nanometers. For example, SIMS is the classical technique used in microelectronics to study dopant distribution in semiconductors and became, after radiotracers were forsaken, the principal tool used for atomic transport characterization (diffusion coefficient measurements). Due to the lack of other equivalent techniques, sometimes SIMS could be used erroneously, especially when the analyzed solute atoms formed clusters, or for interfacial concentration measurements (segregation coefficient measurements) for example.
View Article and Find Full Text PDFIn this work a novel process allowing for the production of nanoporous Ge thin films is presented. This process uses the combination of two techniques: Ge sputtering on SiO2 and dopant ion implantation. The process entails four successive steps: (i) Ge sputtering on SiO2, (ii) implantation preannealing, (iii) high-dose dopant implantation, and (iv) implantation postannealing.
View Article and Find Full Text PDFThe Stranski-Krastanov growth of Ge islands on Si(001) has been widely studied. The morphology changes of Ge islands during growth, from nucleation to hut/island formation and growth, followed by hut-to-dome island transformation and dislocation nucleation of domes, have been well described, even at the atomic scale, using techniques such as scanning tunneling microscopy and transmission electron microscopy. Although it is known that these islands do not consist of pure Ge (due to Si/Ge intermixing), the composition of the Ge islands is not precisely known.
View Article and Find Full Text PDF