Publications by authors named "Khalid Arhzaouy"

The pathogenic mechanism by which dominant mutations in VCP cause multisystem proteinopathy (MSP), a rare neurodegenerative disease that presents as fronto-temporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), remains unclear. To explore this, we inactivate VCP in murine postnatal forebrain neurons (VCP conditional knockout [cKO]). VCP cKO mice have cortical brain atrophy, neuronal loss, autophago-lysosomal dysfunction, and TDP-43 inclusions resembling FTLD-TDP pathology.

View Article and Find Full Text PDF

Desmin-associated myofibrillar myopathy (MFM) has pathologic similarities to neurodegeneration-associated protein aggregate diseases. Desmin is an abundant muscle-specific intermediate filament, and disease mutations lead to its aggregation in cells, animals, and patients. We reasoned that similar to neurodegeneration-associated proteins, desmin itself may form amyloid.

View Article and Find Full Text PDF

Differentiated tissue is particularly vulnerable to alterations in protein and organelle homeostasis. The essential protein VCP, mutated in hereditary inclusion body myopathy, amyotrophic lateral sclerosis and frontotemporal dementia, is critical for efficient clearance of misfolded proteins and damaged organelles in dividing cells, but its role in terminally differentiated tissue affected by disease mutations is less clear. To understand the relevance of VCP in differentiated tissue, we inactivated it in skeletal muscle of adult mice.

View Article and Find Full Text PDF

Rupture of endosomes and lysosomes is a major cellular stress condition leading to cell death and degeneration. Here, we identified an essential role for the ubiquitin-directed AAA-ATPase, p97, in the clearance of damaged lysosomes by autophagy. Upon damage, p97 translocates to lysosomes and there cooperates with a distinct set of cofactors including UBXD1, PLAA, and the deubiquitinating enzyme YOD1, which we term ELDR components for Endo-Lysosomal Damage Response.

View Article and Find Full Text PDF

p97 (VCP) is a homo-hexameric triple-A ATPase that exerts a plethora of cellular processes. Heterozygous missense mutations of p97 cause at least five human neurodegenerative disorders. However, the specific molecular consequences of p97 mutations are hitherto widely unknown.

View Article and Find Full Text PDF

Objective: To identify the genetic etiology and characterize the clinicopathologic features of a novel distal myopathy.

Methods: We performed whole-exome sequencing on a family with an autosomal dominant distal myopathy and targeted exome sequencing in 1 patient with sporadic distal myopathy, both with rimmed vacuolar pathology. We also evaluated the pathogenicity of identified mutations using immunohistochemistry, Western blot analysis, and expression studies.

View Article and Find Full Text PDF

Protein turnover and quality control by the proteasome is of paramount importance for cell homeostasis. Dysfunction of the proteasome is associated with aging processes and human diseases such as neurodegeneration, cardiomyopathy, and cancer. The regulation, i.

View Article and Find Full Text PDF

Ubiquitin (Ub) and ubiquitin-like (UBL) proteins regulate a diverse array of cellular pathways through covalent as well as non-covalent interactions with target proteins. Yeast protein Mdy2 (Get5) and its human homolog GdX (Ubl4a) belong to the class of UBL proteins which do not form conjugates with other proteins. Mdy2 is required for cell survival under heat stress and for efficient mating.

View Article and Find Full Text PDF

Heterozygous mutations in the human VCP (p97) gene cause autosomal-dominant IBMPFD (inclusion body myopathy with early onset Paget's disease of bone and frontotemporal dementia), ALS14 (amyotrophic lateral sclerosis with or without frontotemporal dementia) and HSP (hereditary spastic paraplegia). Most prevalent is the R155C point mutation. We studied the function of p97 in the social amoeba Dictyostelium discoideum and have generated strains that ectopically express wild-type (p97) or mutant p97 (p97(R155C)) fused to RFP in AX2 wild-type and autophagy 9 knock-out (ATG9(KO)) cells.

View Article and Find Full Text PDF