The postnatal interaction between microbiota and the immune system establishes lifelong homeostasis at mucosal epithelial barriers, however, the barrier-specific physiological activities that drive the equilibrium are hardly known. During weaning, the oral epithelium, which is monitored by Langerhans cells (LC), is challenged by the development of a microbial plaque and the initiation of masticatory forces capable of damaging the epithelium. Here we show that microbial colonization following birth facilitates the differentiation of oral LCs, setting the stage for the weaning period, in which adaptive immunity develops.
View Article and Find Full Text PDFAcne vulgaris is a common neutrophil-driven inflammatory skin disorder in which Cutibacterium acnes (C. acnes) is known to play a key role. For decades, antibiotics have been widely employed to treat acne vulgaris, inevitably resulting in increased bacterial antibiotic resistance.
View Article and Find Full Text PDFWhile saliva regulates the interplay between the microbiota and the oral immune system, the mechanisms establishing postnatal salivary immunity are ill-defined. Here, we show that high levels of neutrophils and neonatal Fc receptor (FcRn)-transferred maternal IgG are temporarily present in the neonatal murine salivary glands in a microbiota-independent manner. During weaning, neutrophils, FcRn, and IgG decrease in the salivary glands, while the polymeric immunoglobulin receptor (pIgR) is upregulated in a growth arrest-specific 6 (GAS6)-dependent manner independent of the microbiota.
View Article and Find Full Text PDFThe murine parotid salivary glands develop postnatally, shaping oral mucosal immunity in early and adult life. This protocol details the surgical removal of the parotid glands (parotidectomy) of mice. We also describe a protocol for saliva collection to enable manipulation and measurement of physiological and immunological salivary functions.
View Article and Find Full Text PDFTrends Immunol
July 2021
The first encounter of mucosal barriers with the microbiota initiates host-microbiota feedback loops instructing the tailored development of both the immune system and microbiota at each mucosal site. Once established, balanced immunological interactions enable symbiotic relationships with the microbiota in adult life. This process has been extensively investigated in the mammalian monolayer epithelium-covered intestine and lung mucosae; however, the postnatal mechanisms engaged by the oral mucosa to establish homeostasis are currently being discovered.
View Article and Find Full Text PDFCell Host Microbe
February 2021
Postnatal host-microbiota interplay governs mucosal homeostasis and is considered to have life-long health consequences. The intestine monolayer epithelium is critically involved in such early-life processes; nevertheless, the role of the oral multilayer epithelium remains ill defined. We demonstrate that unlike the intestine, the neonate oral cavity is immensely colonized by the microbiota that decline to adult levels during weaning.
View Article and Find Full Text PDFUnlike epidermal Langerhans cells (LCs) that originate from embryonic precursors and are self-renewed locally, mucosal LCs arise and are replaced by circulating bone marrow (BM) precursors throughout life. While the unique lifecycle of epidermal LCs is associated with an age-dependent decrease in their numbers, whether and how aging has an impact on mucosal LCs remains unclear. Focusing on gingival LCs we found that mucosal LCs are reduced with age but exhibit altered morphology with that observed in aged epidermal LCs.
View Article and Find Full Text PDF