Annu Int Conf IEEE Eng Med Biol Soc
July 2018
Cardiac arrhythmia is known to be one of the most common causes of death worldwide. Therefore, development of efficient arrhythmia detection techniques is essential to save patients' lives. In this paper, we introduce a new real-time cardiac arrhythmia classification using memristor neuromorphic computing system for classification of 5 different beat types.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Brain Computer Interface (BCI) is a channel of communication between the human brain and an external device through brain electrical activity. In this paper, we extracted different features to boost the classification accuracy as well as the mutual information of BCI systems. The extracted features include the magnitude of the discrete Fourier transform and the wavelet coefficients for the EEG signals in addition to distance series values and invariant moments calculated for the reconstructed phase space of the EEG measurements.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2016
Cardiac arrhythmia is a serious disorder in heart electrical activity that may have fatal consequences especially if not detected early. This motivated the development of automated arrhythmia detection systems that can early detect and accurately recognize arrhythmias thus significantly improving the chances of patient survival. In this paper, we propose an improved arrhythmia detection system particularly designed to identify five different types based on nonlinear dynamical modeling of electrocardiogram signals.
View Article and Find Full Text PDF