Publications by authors named "Khaled Parvez"

After the discovery of graphene in 2004, the field of atomically thin crystals has exploded with the discovery of thousands of 2-dimensional materials (2DMs) with unique electronic and optical properties, by making them very attractive for a broad range of applications, from electronics to energy storage and harvesting, and from sensing to biomedical applications. In order to integrate 2DMs into practical applications, it is crucial to develop mass scalable techniques providing crystals of high quality and in large yield. Electrochemical exfoliation is one of the most promising methods for producing 2DMs, as it enables quick and large-scale production of solution processable nanosheets with a thickness well below 10 layers and lateral size above 1 μm.

View Article and Find Full Text PDF

This work demonstrates the use of 2D materials (2DMs) as identification tags by exploiting their unique shape. Electrochemical exfoliation enables the production of large quantities of optically accessible 2DMs with diverse morphology and large lateral sizes up to 20 µm. Image processing techniques are used to facilitate shape identification and matching within a dataset of 500 unique nanosheets.

View Article and Find Full Text PDF

Two-dimensional (2D) materials are uniquely suited for highly anisotropic thermal transport, which is important in thermoelectrics, thermal barrier coatings, and heat spreaders. Solution-processed 2D materials are attractive for simple, low-cost, and large-scale fabrication of devices on, virtually, any substrate. However, to date, there are only few reports with contrasting results on the thermal conductivity of graphene films, while thermal transport has been hardly measured for other types of solution-processed 2D material films.

View Article and Find Full Text PDF

Quaternary metal chalcogenides have attracted attention as candidates for absorber materials for inexpensive and sustainable solar energy generation. One of these materials, bournonite (orthorhombic CuPbSbS), has attracted much interest of late for its properties commensurate with photovoltaic energy conversion. This paper outlines the synthesis of bournonite for the first time by a discrete molecular precursor strategy.

View Article and Find Full Text PDF

Electrochemical exfoliation is one of the most promising methods for scalable production of graphene. However, limited understanding of its Raman spectrum as well as lack of measurement standards for graphene strongly limit its industrial applications. In this work, we show a systematic study of the Raman spectrum of electrochemically exfoliated graphene, produced using different electrolytes and types of solvents in varying amounts.

View Article and Find Full Text PDF

We report room temperature Hall mobility measurements, low temperature magnetoresistance analysis and low-frequency noise characterization of inkjet-printed graphene films on fused quartz and SiO/Si substrates. We found that thermal annealing in vacuum at 450 °C is a necessary step in order to stabilize the Hall voltage across the devices, allowing their electrical characterization. The printed films present a minimum sheet resistance of 23.

View Article and Find Full Text PDF

Heteroatom doping of nanocarbon films can efficiently boost the pseudocapacitance of micro-supercapacitors (MSCs); however, wafer-scale fabrication of sulfur-doped graphene films with a tailored thickness and homogeneous doping for MSCs remains a great challenge. Here we demonstrate the bottom-up fabrication of continuous, uniform, and ultrathin sulfur-doped graphene (SG) films, derived from the peripherical trisulfur-annulated hexa-peri-hexabenzocoronene (SHBC), for ultrahigh-rate MSCs (SG-MSCs) with landmark volumetric capacitance. The SG film was prepared by thermal annealing of the spray-coated SHBC-based film, with assistance of a thin Au protecting layer, at 800 °C for 30 min.

View Article and Find Full Text PDF

Exploiting the properties of two-dimensional crystals requires a mass production method able to produce heterostructures of arbitrary complexity on any substrate. Solution processing of graphene allows simple and low-cost techniques such as inkjet printing to be used for device fabrication. However, the available printable formulations are still far from ideal as they are either based on toxic solvents, have low concentration, or require time-consuming and expensive processing.

View Article and Find Full Text PDF

Stacked-layer heterostructure films of 2D thiophene nanosheets and electrochemically exfoliated graphene are constructed for ultrahigh-rate all-solid-state flexible pseudocapacitors and micro-supercapacitors with superior volumetric capacitance due to the synergetic effect of the ultrathin pseudocapacitive thiophene nanosheets and the capacitive electrochemically exfoliated graphene.

View Article and Find Full Text PDF

High-quality graphene oxide (GO) with high crystallinity and electrical conductivity as well as in situ doped with nitrogen and sulfur is obtained via the electrochemical exfoliation of graphite. Furthermore, iron incorporated GO sheets show promising catalytic activity and stable methanol tolerance durability when used as electrocatalysts for the oxygen reduction reaction.

View Article and Find Full Text PDF

Despite the intensive research efforts devoted to graphene fabrication over the past decade, the production of high-quality graphene on a large scale, at an affordable cost, and in a reproducible manner still represents a great challenge. Here, we report a novel method based on the controlled electrochemical exfoliation of graphite in aqueous ammonium sulfate electrolyte to produce graphene in large quantities and with outstanding quality. Because the radicals (e.

View Article and Find Full Text PDF

A combination of ultraviolet and X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and first principle calculations was used to study the electronic structure at the interface between the strong molecular acceptor 1,3,4,5,7,8-hexafluorotetracyano-naphthoquinodimethane (F6TCNNQ) and a graphene layer supported on either a quartz or a copper substrate. We find evidence for fundamentally different charge redistribution mechanisms in the two ternary systems, as a consequence of the insulating versus metallic character of the substrates. While electron transfer occurs exclusively from graphene to F6TCNNQ on the quartz support (p-doping of graphene), the Cu substrate electron reservoir induces an additional electron density flow to graphene decorated with the acceptor monolayer.

View Article and Find Full Text PDF

The outstanding charge transport properties of graphene enable numerous electronic applications of this remarkable material, many of which are expected to operate at ultrahigh speeds. In the regime of ultrafast, sub-picosecond electric fields, however, the very high conduction properties of graphene are not necessarily preserved, with the physical picture explaining this behaviour remaining unclear. Here we show that in graphene, the charge transport on an ultrafast timescale is determined by a simple thermodynamic balance maintained within the graphene electronic system acting as a thermalized electron gas.

View Article and Find Full Text PDF

Graphene-based compact nanohybrid films made by alternate deposition of electrochemically exfoliated graphene and mesoporous graphene-conducting polymer nanosheets are constructed for high-energy micro-supercapacitors. They are shown to have a landmark areal capacitance of 368 mF cm(-2) and volumetric capacitance of 736 F cm(-3) .

View Article and Find Full Text PDF

Ultrathin printable graphene supercapacitors are demonstrated, based on solution-processed electrochemically exfoliated graphene hybrid films on an ultrathin poly(ethylene terephthalate) substrate, exhibiting an unprecedented volumetric capacitance of 348 F cm(-3) , an ultrahigh scan rate of 2000 V s(-1) , and AC line-filtering performance.

View Article and Find Full Text PDF

We identify the influence of nitrogen-doping on charge- and magnetotransport of single layer graphene by comparing doped and undoped samples. Both sample types are grown by chemical vapor deposition (CVD) and transferred in an identical process onto Si/SiO2 wafers. We characterize the samples by Raman spectroscopy as well as by variable temperature magnetotransport measurements.

View Article and Find Full Text PDF

A novel solution fabrication of large-area, highly conductive graphene films by spray-coating of a hybrid ink of exfoliated graphene (EG)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (PH1000) is demonstrated. The fabricated graphene films exhibit excellent mechanical properties, thus enabling their application as bottom electrodes in ultrathin organic photodetector devices with performance comparable to that of the state-of-the-art Si-based inorganic photodetectors.

View Article and Find Full Text PDF

Highly uniform, ultrathin, layer-by-layer heteroatom (N, B) co-doped graphene films are fabricated for high-performance on-chip planar micro-supercapacitors with an ultrahigh volumetric capacitance of ∼488 F cm(-3) and excellent rate capability due to the synergistic effect of nitrogen and boron co-doping.

View Article and Find Full Text PDF

Mass production of high-quality graphene sheets is essential for their practical application in electronics, optoelectronics, composite materials, and energy-storage devices. Here we report a prompt electrochemical exfoliation of graphene sheets into aqueous solutions of different inorganic salts ((NH4)2SO4, Na2SO4, K2SO4, etc.).

View Article and Find Full Text PDF

Nitrogen-doped carbon nanosheets (NDCN) with size-defined mesopores are reported as highly efficient metal-free catalyst for the oxygen reduction reaction (ORR). A uniform and tunable mesoporous structure of NDCN is prepared using a templating approach. Such controlled mesoporous structure in the NDCN exerts an essential influence on the electrocatalytic performance in both alkaline and acidic media for the ORR.

View Article and Find Full Text PDF

A cobalt-nitrogen-doped porous carbon that exhibits a ribbon-shape morphology, high surface area, mesoporous structure, and high nitrogen and cobalt content is fabricated for high-performance self-supported oxygen reduction electrocatalytsts through template-free pyrolysis of cobalt porphyrin-based conjugated mesoporous polymer frameworks.

View Article and Find Full Text PDF

Chemical functionalization is one of the most powerful and widely used strategies to control the properties of nanomaterials, particularly in the field of graphene. However, the ill-defined structure of the present functionalized graphene inhibits atomically precise structural characterization and structure-correlated property modulation. Here we present a general edge chlorination protocol for atomically precise functionalization of nanographenes at different scales from 1.

View Article and Find Full Text PDF

Micro-supercapacitors are important on-chip micro-power sources for miniaturized electronic devices. Although the performance of micro-supercapacitors has been significantly advanced by fabricating nanostructured materials, developing thin-film manufacture technologies and device architectures, their power or energy densities remain far from those of electrolytic capacitors or lithium thin-film batteries. Here we demonstrate graphene-based in-plane interdigital micro-supercapacitors on arbitrary substrates.

View Article and Find Full Text PDF

We report the synthesis, characterization, and self-assembly of a new gemini-type amphiphilic hexathienocoronene (HTCGemini), which owes its amphiphilicity to two hydrophobic dodecyl chains on one side of the HTC core and two hydrophilic triethylene glycol (TEG) chains on the other. Bearing a "softer" aromatic HTC core than the conventional hexa-peri-hexabenzocoronenes (HBC), and being more planar than contorted-hexabenzocoronenes (c-HBC), HTCGemini is demonstrated to yield various well-ordered assemblies in solution, at the liquid-solid interface, and in solid state by the use of different processing techniques. Regular fibers, helices, and tubes can be formed simply by processing from different solvents.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionatuimnchg2bcuc6cem2h7d04vklcmli2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once