Micromachines (Basel)
February 2024
This paper reviews the evolution of methodologies and tools for modeling, simulation, and design of digital electronic system-on-chip (SoC) implementations, with a focus on industrial electronics applications. Key technological, economic, and geopolitical trends are presented at the outset, before reviewing SoC design methodologies and tools. The fundamentals of SoC design flows are laid out.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2016
Bioinformatics data tend to be highly dimensional in nature thus impose significant computational demands. To resolve limitations of conventional computing methods, several alternative high performance computing solutions have been proposed by scientists such as Graphical Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs). The latter have shown to be efficient and high in performance.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2015
Classifying Microarray data, which are of high dimensional nature, requires high computational power. Support Vector Machines-based classifier (SVM) is among the most common and successful classifiers used in the analysis of Microarray data but also requires high computational power due to its complex mathematical architecture. Implementing SVM on hardware exploits the parallelism available within the algorithm kernels to accelerate the classification of Microarray data.
View Article and Find Full Text PDF