Publications by authors named "Khairul Anuar Shariff"

Objectives:  Pulp capping is a pivotal treatment in dentistry aimed at preserving pulp vitality. While calcium hydroxide has long been considered the gold standard in pulp capping materials, its long-term use can induce chronic inflammation, ultimately leading to pulp necrosis and affecting human health. In this context, ellagic acid, a natural compound with potent anti-inflammatory properties, emerged as a promising adjunct to mitigate inflammation associated with calcium hydroxide application, thereby sustaining pulp vitality.

View Article and Find Full Text PDF

Carbonate apatite (COAp) is a bioceramic material with excellent properties for bone and dentin regeneration. To enhance its mechanical strength and bioactivity, silica calcium phosphate composites (Si-CaP) and calcium hydroxide (Ca(OH)) were added to COAp cement. The aim of this study was to investigate the effect of Si-CaP and Ca(OH) on the mechanical properties in terms of the compressive strength and biological characteristics of COAp cement, specifically the formation of an apatite layer and the exchange of Ca, P, and Si elements.

View Article and Find Full Text PDF

Objective: Ellagic acid, a phenolic compound with anti-inflammatory potential, can be used to accelerate the bone healing process and affect human health, while hydroxyapatite is the most commonly used bone graft material. Using a combination of the two materials results in reduced inflammation and increased osteogenesis. This study aimed to determine the effects of combining ellagic acid and hydroxyapatite in bone marker remodelling by analysing the expression of tumour necrosis factor- (TNF-), interleukin 10 (IL-10), bone morphogenetic 4 protein (BMP-4), and osteopontin (OPN).

View Article and Find Full Text PDF

Celastrol, a natural triterpene from the Tripterygium wilfordii has been demonstrated to possess attributive properties to attenuate various animal models of obesity-associated conditions. The present study aimed to elucidate the putative targets of celastrol on intracellular glucose utilization and mitochondrial oxidative metabolism in the isolated quadriceps skeletal muscle of high-fat diet (HFD)-induced obese male C57BL6/J mice. Here we showed that celastrol remarkably attenuated obesity and insulin resistance through improvement of systemic glucose tolerance and insulin sensitivity.

View Article and Find Full Text PDF

Three-dimensional reconstruction plays a vital role in assisting doctors and surgeons in diagnosing the healing progress of bone defects. Common three-dimensional reconstruction methods include surface and volume rendering. As the focus is on the shape of the bone, this study omits the volume rendering methods.

View Article and Find Full Text PDF

The combination of hydroxyapatite and the herbal extract ellagic acid is expected to accelerate the bone healing process (osteogenesis) due to the extract's anti-inflammatory and antioxidant properties. The osteogenesis process is closely associated with angiogenesis markers, such as fibroblast growth factor 2 (FGF-2), vascular endothelial growth factor (VEGF) and alkali phosphatase (ALP). The objective of this study is to analyse the combination of ellagic acid and hydroxyapatite to promote FGF-2, VEGF and ALP expression as angiogenesis markers in a bone defect model.

View Article and Find Full Text PDF

High fructose consumption has been linked to low-grade inflammation and insulin resistance that results in increased intracellular 11ß-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity. Celastrol, a pentacyclic triterpene, has been demonstrated to exhibit multifaceted targets to attenuate various metabolic diseases associated with inflammation. However, the underlying mechanisms by which celastrol exerts its attributive properties on high fructose diet (HFrD)-induced metabolic syndrome remain elusive.

View Article and Find Full Text PDF

Despite the excellent in vitro and in vivo performance of akermanite ceramic, its poor toughness and strength limit the biomedical application, particularly under load. Herein, the incorporation of strontium enhanced the physicomechanical properties of akermanite and this is ascribed to the decrease in grain size and better sinterability. To investigate the biological performance, the bone-cell interaction with sintered pellets was assessed by in vitro biocompatibility with human fetal osteoblast cell (hFOB).

View Article and Find Full Text PDF

Accumulating evidence indicates that adipose tissue inflammation and mitochondrial dysfunction in skeletal muscle are inextricably linked to obesity and insulin resistance. Celastrol, a bioactive compound derived from the root of Tripterygium wilfordii exhibits a number of attributive properties to attenuate metabolic dysfunction in various cellular and animal disease models. However, the underlying therapeutic mechanisms of celastrol in the obesogenic environment in vivo remain elusive.

View Article and Find Full Text PDF

Withaferin A (WA), a bioactive constituent derived from Withania somnifera plant, has been shown to exhibit many qualifying properties in attenuating several metabolic diseases. The current investigation sought to elucidate the protective mechanisms of WA (1.25 mg/kg/day) on pre-existing obese mice mediated by high-fat diet (HFD) for 12 weeks.

View Article and Find Full Text PDF

β-Tricalcium phosphate (β-TCP) has attracted much attention as an artificial bone substitute owing to its biocompatibility and osteoconductivity. In this study, osteoconductivity of β-TCP bone substitute was enhanced without using growth factors or cells. Dicalcium phosphate dihydrate (DCPD), which is known to possess the highest solubility among calcium phosphates, was coated on β-TCP granules by exposing their surface with acidic calcium phosphate solution.

View Article and Find Full Text PDF

Interconnected pore forming calcium phosphate cement is useful for the reconstruction of bone defects as well as scaffold fabrication in tissue engineering. In this study, interconnected pore forming calcium phosphate cement was fabricated using α-tricalcium phosphate (α-TCP) foam granules. When α-TCP foam granules were mixed with acidic calcium phosphate solution prepared from monocalcium phosphate monohydrate (MCPM) and phosphoric acid solution, brushite crystals were precipitated.

View Article and Find Full Text PDF