Publications by authors named "Khadine A Higgins"

Resistance to copper (Cu) toxicity in the respiratory pathogen is regulated by the Cu-specific metallosensor CopY. CopY is structurally related to the antibiotic-resistance regulatory proteins MecI and BlaI from , but is otherwise poorly characterized. Here we employ a multi-pronged experimental strategy to define the CopY coordination chemistry and the unique mechanism of allosteric activation by Zn(ii) and allosteric inhibition by Cu(i) of promoter DNA binding.

View Article and Find Full Text PDF

Hydrogen sulfide (H2S) is both a lethal gas and an emerging gasotransmitter in humans, suggesting that the cellular H2S level must be tightly regulated. CstB is encoded by the cst operon of the major human pathogen Staphylococcus aureus and is under the transcriptional control of the persulfide sensor CstR and H2S. Here, we show that CstB is a multifunctional Fe(II)-containing persulfide dioxygenase (PDO), analogous to the vertebrate protein ETHE1 (ethylmalonic encephalopathy protein 1).

View Article and Find Full Text PDF

The cst operon of the major human pathogen Staphylococcus aureus (S. aureus) is under the transcriptional control of CsoR-like sulfurtransferase repressor (CstR). Expression of this operon is induced by hydrogen sulfide, and two components of the cst operon, cstA and cstB, protect S.

View Article and Find Full Text PDF

CsoR/RcnR transcriptional repressors adopt a disc-shaped, all α-helical dimer of dimers tetrameric architecture, with a four-helix bundle the key structural feature of the dimer. Individual members of this large family of repressors coordinate Cu(I) or Ni(II)/Co(II) or perform cysteine sulfur chemistry in mitigating the effects of metal or metabolite toxicity, respectively. Here we highlight recent insights into the functional diversity of this fascinating family of repressors.

View Article and Find Full Text PDF

Transition metals, including manganese, are required for the proper virulence and persistence of many pathogenic bacteria. In Streptococcus pneumoniae (Spn), manganese homeostasis is controlled by a high-affinity Mn(II) uptake complex, PsaBCA, and a constitutively expressed efflux transporter, MntE. psaBCA expression is transcriptionally regulated by the DtxR/MntR family metalloregulatory protein pneumococcal surface antigen repressor (PsaR) in Spn.

View Article and Find Full Text PDF

Copper resistance has emerged as an important virulence determinant of microbial pathogens. In Streptococcus pneumoniae, copper resistance is mediated by the copper-responsive repressor CopY, CupA and the copper-effluxing P(1B)-type ATPase CopA. We show here that CupA is a previously uncharacterized cell membrane-anchored Cu(I) chaperone and that a Cu(I) binding-competent, membrane-localized CupA is obligatory for copper resistance.

View Article and Find Full Text PDF

The RcnR metalloregulator represses the transcription of the Co(II) and Ni(II) exporter, RcnAB. Previous studies have shown that Co(II) and Ni(II) bind to RcnR in six-coordinate sites, resulting in derepression. Here, the roles of His60, His64, and His67 in specific metal recognition are examined.

View Article and Find Full Text PDF

Nickel is an essential metal for a number of bacterial species that have developed systems for acquiring, delivering, and incorporating the metal into target enzymes and controlling the levels of nickel in cells to prevent toxic effects. As with other transition metals, these trafficking systems must be able to distinguish between the desired metal and other transition metal ions with similar physical and chemical properties. Because there are few enzymes (targets) that require nickel for activity (e.

View Article and Find Full Text PDF

RcnR (resistance to cobalt and nickel regulator) is a 40-kDa homotetrameric protein and metalloregulator that controls the transcription of the Co(II) and Ni(II) exporter, RcnAB, by binding to DNA as an apoprotein and releasing DNA in response to specifically binding Co(II) and Ni(II) ions. Using X-ray absorption spectroscopy (XAS) to examine the structure of metals bound and lacZ reporter assays of the transcription of RcnA in response to metal binding, in WT and mutant proteins, the roles of coordination number, ligand selection, and residues in the N-terminus of the protein were examined as determinants in metal ion recognition. The studies show that the cognate metal ions, Co(II) and Ni(II), which bind in (N/O)(5)S six-coordinate sites, are distinguished from non-cognate metal ions (Cu(I) and Zn(II)), which bind only three protein ligands and one anion from the buffer, by coordination number and ligand selection.

View Article and Find Full Text PDF
Article Synopsis
  • Superoxide dismutases (SODs) optimize the redox potential around 300 mV for efficient catalysis, relying on specific structural elements and interactions at the metallocenter.
  • Structural and functional studies on nickel-dependent SOD (NiSOD) from *Streptomyces coelicolor*, especially focusing on mutations at a critical tyrosine residue, reveal unique ligand environments and their effects on the enzyme's activity and anion binding.
  • Comparative analysis with manganese and iron SODs highlights different mechanisms for redox potential and proton supply, while all these SODs maintain similar methods for regulating anion access to their active sites.
View Article and Find Full Text PDF