Publications by authors named "Khadijeh Ramezani-Ali Akbari"

Aim: Although people with HER2-positive breast cancer benefit from approved HER2-targeted therapy, acquiring resistance to the therapies occurs. Animal models can play a part in gaining a deep understanding of such a process and addressing questions concerning developing and improving immunotherapy approaches.

Materials And Methods: To develop such a model, we transfected murine 4T1 cells with the pCMV6-Neo-HER2 construct and evaluated HER2 expression and its effects on the established cell line behavior in vitro and in vivo.

View Article and Find Full Text PDF

Background: Clinical trials using Cabozantinib have shown promising results in metastatic breast cancer. This efficacy mainly results from removing and/or polarization of tumor-promoting myeloid cells. Nevertheless, whether such myeloid-derived suppressor cells (MDSCs) depletion can be used to improve the efficacy of anti-HER2 antibodies in early breast cancer has not been defined yet.

View Article and Find Full Text PDF

Background: Myeloid derived suppressor cells (MDSCs) are an immature heterogeneous population of myeloid lineage that attenuate the anti-tumor immune responses. Depletion of MDSCs has been shown to improve efficacy of cancer immunotherapeutic approaches. Here, we expressed and characterized a peptibody which had previously been defined by phage display technique capable of recognizing and depleting murine MDSCs.

View Article and Find Full Text PDF

Background: Emerging evidence suggests that secretome of mesenchymal stem cells has many anti-inflammatory and regenerative properties, which makes it a suitable candidate for the treatment of autoimmune and degenerative diseases. Dipeptidyl Peptidase-IV (DPP-IV)/CD26 and Aminopeptidase N (APN)/CD13 are ubiquitous ecto-enzymes which can digest various substrates including some chemokines and neuropeptides that are involved in inflammatory conditions.

Objective: To evaluate the enzymatic activity of DPP-IV/CD26 and APN/CD13 in MSC conditioned media (MSC-CM).

View Article and Find Full Text PDF