(1) Rho-associated coiled-coil protein kinase (ROCK) signaling cascade impacts a wide array of cellular events. For cellular therapeutics, scalable expansion of primary human corneal endothelial cells (CECs) is crucial, and the inhibition of ROCK signaling using a well characterized ROCK inhibitor (ROCKi) Y-27632 had been shown to enhance overall endothelial cell yield. (2) In this study, we compared several classes of ROCK inhibitors to both ROCK-I and ROCK-II, using in silico binding simulation.
View Article and Find Full Text PDFFollowing corneal transplantation, there is an initial, rapid decline in corneal endothelial cells (CECs) following surgery. Direct imaging of post-transplantation endothelial cells is only possible weeks after surgery and with a limited field of view. We have developed a labelling approach using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DIR) dye solution, that enables tracking of labelled CECs in vivo for at least 1 month.
View Article and Find Full Text PDFCell therapies are emerging as a unique class of clinical therapeutics in medicine. In 2015, Holoclar ( expanded autologous human corneal epithelial cells containing stem cells) gained the regulatory approval for treating limbal stem cell deficiency after chemical eye burn. This has set a precedent in ophthalmology and in medicine, reinforcing the therapeutic promise of cell therapy.
View Article and Find Full Text PDFDonor corneas with low endothelial cell densities (ECD) are deemed unsuitable for corneal endothelial transplantation. This study evaluated a two-step incubation and dissociation harvesting approach to isolate single corneal endothelial cells (CECs) from donor corneas for corneal endothelial cell-injection (CE-CI) therapy. To isolate CECs directly from donor corneas, optimization studies were performed where donor Descemet's membrane/corneal endothelium (DM/CE) were peeled and incubated in either M4-F99 or M5-Endo media before enzymatic digestion.
View Article and Find Full Text PDFAs the cornea is one of the most transplanted tissues in the body it has placed a burden on the provision of corneas from cadaveric donors. Corneal endothelial dysfunction is the leading indication for cornea transplant. Therefore, tissue engineering is emerging as an alternative approach to overcome the global shortage of transplant-grade corneas.
View Article and Find Full Text PDFCorneal transparency is maintained by a monolayer of corneal endothelial cells. Defects in corneal endothelial cells (CEnCs) can be rectified surgically through transplantation. Fuchs' endothelial corneal dystrophy (FECD) is the foremost cause of endothelial dysfunction and the leading indication for transplantation.
View Article and Find Full Text PDFPLoS One
March 2020
Objective: We aimed to investigate the functionality of human decellularized stromal laminas seeded with cultured human corneal endothelial cells as a tissue engineered endothelial graft (TEEK) construct to perform endothelial keratoplasty in an animal model of corneal endothelial damage.
Methods: Engineered corneal endothelial grafts were constructed by seeding cultured human corneal endothelial cell (hCEC) suspensions onto decellularized human corneal stromal laminas with various coatings. The functionality and survival of these grafts with cultured hCECs was examined in a rabbit model of corneal endothelial damage after central descemetorhexis.
Restoration of vision due to corneal blindness from corneal endothelial dysfunction can be achieved via a corneal transplantation. However, global shortage of donor tissues has driven the development cell-based therapeutics. With the capacity to propagate regulatory compliant human corneal endothelial cells (CEnCs), this study evaluated the functionality of propagated CEnCs delivered via tissue-engineered endothelial keratoplasty (TE-EK) or corneal endothelial cell injection (CE-CI) within a rabbit model of bullous keratopathy.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2018
The inner layer of the cornea, the corneal endothelium, is post-mitotic and unable to regenerate if damaged. The corneal endothelium is one of the most transplanted tissues in the body. Fuchs' endothelial corneal dystrophy (FECD) is the leading indication for corneal endothelial transplantation.
View Article and Find Full Text PDFCorneal transplantation is the only treatment available to restore vision for individuals with blindness due to corneal endothelial dysfunction. However, severe shortage of available donor corneas remains a global challenge. Functional regulatory compliant tissue-engineered corneal endothelial graft substitute can alleviate this reliance on cadaveric corneal graft material.
View Article and Find Full Text PDFPurpose: To establish a method for assessing graft viability, in-vivo, following corneal transplantation.
Methods: Optimization of calcein AM fluorescence and toxicity assessment was performed in cultured human corneal endothelial cells and ex-vivo corneal tissue. Descemet membrane endothelial keratoplasty grafts were incubated with calcein AM and imaged pre and post preparation, and in-situ after insertion and unfolding in a pig eye model.
Naturally-bioactive hydrogels like gelatin provide favorable properties for tissue-engineering but lack sufficient mechanical strength for use as implantable tissue engineering substrates. Complex fabrication or multi-component additives can improve material strength, but often compromises other properties. Studies have shown gelatin methacrylate (GelMA) as a bioactive hydrogel with diverse tissue growth applications.
View Article and Find Full Text PDFA common indication for corneal transplantation, which is the most transplanted tissue, is a dysfunctional corneal endothelium due to Fuchs' endothelial dystrophy (FED). FED is diagnosed by the presence of in vivo pathological microtopography on the Descemet membrane, which is called corneal guttata. Minimally invasive corneal endothelial cell regenerative procedures such as endothelial cell injection therapy and Rho kinase inhibitor pharmacotherapy have been proposed as alternatives to conventional corneal transplantation for FED patients.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
February 2016
Purpose: To characterize the effects of Descemet's stripping, Rho-associated protein kinase inhibitor Y-27632, and donor age on endothelial migration in human corneas maintained in ex vivo culture.
Methods: Twenty-eight cadaveric human corneas underwent ex vivo culture in either standard or Y-27632-supplemented culture medium for 14 days. The posterior surface of each cornea was manipulated to create two types of wounds: scratched wound--corneal endothelial cells (CECs) were denuded from the Descemet's membrane (DM) to leave behind a bare but intact DM; and peeled wound--both the DM and overlying CECs were stripped to leave behind bare corneal stroma.
The global shortage of donor corneas has garnered extensive interest in the development of graft alternatives suitable for endothelial keratoplasty using cultivated primary human corneal endothelial cells (CECs). We have recently described a dual media approach for the propagation of human CECs. In this work, we characterize the effects of a Rho-kinase inhibitor Y-27632 on the cultivation of CECs propagated using the dual media culture system.
View Article and Find Full Text PDFOne of the most common indications for corneal transplantation is corneal endothelium dysfunction, which can lead to corneal blindness. Due to a worldwide donor cornea shortage, alternative treatments are needed, but the development of new treatment strategies relies on the successful in vitro culture of primary human corneal endothelial cells (HCECs) because transformed cell lines and animal-derived corneal endothelial cells are not desirable for therapeutic applications. Primary HCECs are non-proliferative in vivo and challenging to expand in vitro while maintaining their characteristic cell morphology and critical markers.
View Article and Find Full Text PDFPurpose: To investigate the quality of the ultrathin corneal grafts prepared by femtosecond laser from the endothelial side for Descemet stripping endothelial keratoplasty.
Methods: Thirty human corneoscleral buttons were cut from the endothelial side by laser Doppler velocimetry (LDV) with or without viscoelastic materials coating. Two cutting depths were selected: 70 and 90 μm.
Corneal endothelium-associated corneal blindness is the most common indication for corneal transplantation. Restorative corneal transplant surgery is the only option to reverse the blindness, but a global shortage of donor material remains an issue. There are immense clinical interests in the development of alternative treatment strategies to alleviate current reliance on donor materials.
View Article and Find Full Text PDF