Publications by authors named "Khadga J Karki"

This paper investigates the dynamic behavior of EthylChlorophyllide A (EChlideA) molecules in a methanol solution confined within a 4 nm silica nanoslit, using molecular dynamics simulations over a duration of 1 ms. Three systems, containing 1, 2, and 4 solutes, were studied at 298 K. The results demonstrate that EChlideA molecules predominantly adsorb onto the silica surfaces, driven by specific interactions between chlorin ring's methyl group and the hydroxyl groups of the silica.

View Article and Find Full Text PDF

Despite a few recent reports on Rashba effects in two-dimensional (2D) Ruddlesden-Popper (RP) hybrid perovskites, the precise role of organic spacer cations in influencing Rashba band splitting remains unclear. Here, using a combination of temperature-dependent two-photon photoluminescence (2PPL) and time-resolved photoluminescence spectroscopy, alongside density functional theory (DFT) calculations, we contribute to significant insights into the Rashba band splitting found for 2D RP hybrid perovskites. The results demonstrate that the polarity of the organic spacer cation is crucial in inducing structural distortions that lead to Rashba-type band splitting.

View Article and Find Full Text PDF

Quasi two-dimensional perovskites have attracted great attention for applications in light-emitting devices and photovoltaics due to their robustness and tunable highly efficient photoluminescence (PL). However, the mechanism of intrinsic PL in these materials is still not fully understood. In this work, we have analysed the nature of the different emissive states and the impact of temperature on the emissions in quasi two-dimensional methyl ammonium lead bromide perovskite (q-MPB) and cesium lead bromide perovskite (q-CPB).

View Article and Find Full Text PDF

The synthesis and crystal structure of rhodamine 590 acid phthalate (RhAP) have been reported. This novel solid-state rhodamine derivative not only has a longer fluorescence lifetime compared to rhodamine solid-state matrixes where emission is quenched but also possesses strong nonlinear optical characteristics. The static and dynamic first- and second-order hyperpolarizabilities were calculated using the time-dependent density functional theory at the B3LYP/6-31+G* level.

View Article and Find Full Text PDF

We apply two sparse reconstruction techniques, the least absolute shrinkage and selection operator (LASSO) and the sparse exponential mode analysis (SEMA), to two-dimensional (2D) spectroscopy. The algorithms are first tested on model data, showing that both are able to reconstruct the spectra using only a fraction of the data required by the traditional Fourier-based estimator. Through the analysis of the sparsely sampled experimental fluorescence-detected 2D spectra of LH2 complexes, we conclude that both SEMA and LASSO can be used to significantly reduce the required data, still allowing one to reconstruct the multidimensional spectra.

View Article and Find Full Text PDF

Charge separation dynamics after the absorption of a photon is a fundamental process relevant both for photosynthetic reaction centers and artificial solar conversion devices. It has been proposed that quantum coherence plays a role in the formation of charge carriers in organic photovoltaics, but experimental proofs have been lacking. Here we report experimental evidence of coherence in the charge separation process in organic donor/acceptor heterojunctions, in the form of low frequency oscillatory signature in the kinetics of the transient absorption and nonlinear two-dimensional photocurrent spectroscopy.

View Article and Find Full Text PDF

Organic lead halide perovskite (OLHP) nanocrystals (NCs) have paved the way to advanced optoelectronic devices through their extraordinary electrical and optical properties. However, understanding of the light-induced complex dynamic phenomena in OLHP NCs remains a subject of debate. Here we used wide field microscopy and time-resolved spectroscopy to correlate the local changes in photophysics and the dynamical behavior of photocarriers.

View Article and Find Full Text PDF

Electronic 2D spectroscopy allows nontrivial quantum effects to be explored in unprecedented detail. Here, we apply recently developed fluorescence detected coherent 2D spectroscopy to study the light harvesting antenna 2 (LH2) of photosynthetic purple bacteria. We report double quantum coherence 2D spectra which show clear cross peaks indicating correlated excitations.

View Article and Find Full Text PDF

Phase modulation and phase cycling schemes have been commonly used in electronic two-dimensional (2D) spectroscopy where the observables are incoherent signals such as fluorescence or photocurrent. Although the methods have distinct advantages compared to the coherent signal-detected 2D spectroscopy in sensitivity, possibility to measure spectra from isolated quantum systems and direct visualization of the contributions from the different states to the action signals, and ambiguities in interpreting the spectra have emerged. Recent reports have shown that apart from the nonlinear signals from the four pulse interactions, mixing of the linear signals due to nonlinear population dynamics during the long measurement time of the action signals can also contribute to the measured 2D spectra.

View Article and Find Full Text PDF

We fabricate photodetectors based on solution-processed single CHNHPbBr microcrystals (MCs) and map the two-photon absorption (TPA) excited photocurrent (PC) with spatial resolution of 1 μm. We find that the charge carrier transport length in the MCs depends on the applied electric field, and increases from 5.7 μm for 0.

View Article and Find Full Text PDF

Organometal halide perovskites in the form of nanocrystals (NCs) have attracted enormous attention due to their unique optoelectronic and photoluminescence (PL) properties. Here, we examine the phase composition and the temperature dependence of emission line width broadening in formamidinium lead bromide (FAPbBr) perovskite nanocrystals (NCs) for light-emitting applications and identify different charge-carrier scattering mechanisms. Our results show most of the emission is from the orthorhombic phase.

View Article and Find Full Text PDF

An approximation to coherent sampling, also known as boot-strapped waveform averaging, is presented. The method uses digital cavities to determine the condition for coherent sampling. It can be used to increase the effective sampling rate of a repetitive signal and the signal to noise ratio simultaneously.

View Article and Find Full Text PDF

Astaxanthin (AXT) is a reference model of xanthophyll carotenoids, which is used in medicine and food industry, and has potential applications in nanotechnology. Because of its importance, there is a great interest in understanding its molecular properties and aggregation mechanism in water and mixed solvents. In this paper, we report a novel model of AXT for molecular dynamics simulation.

View Article and Find Full Text PDF

Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms.

View Article and Find Full Text PDF

Generalized lock-in amplifiers use digital cavities with Q-factors as high as 5 × 10(8) to measure signals with very high precision. In this Note, we show that generalized lock-in amplifiers can be used to analyze microwave (giga-hertz) signals with a precision of few tens of hertz. We propose that the physical changes in the medium of propagation can be measured precisely by the ultra-high precision measurement of the signal.

View Article and Find Full Text PDF

Recently there has been growing interest in the role of coherence in electronic dynamics. Coherent multidimensional spectroscopy has been used to reveal coherent phenomena in numerous material systems. Here we utilize a recent implementation of coherent multidimensional spectroscopy--two-dimensional photocurrent spectroscopy--in which we detect the photocurrent from a PbS quantum dot photocell resulting from its interactions with a sequence of four ultrafast laser pulses.

View Article and Find Full Text PDF

We herein formulate the concept of a generalized lock-in amplifier for the precision measurement of high frequency signals based on digital cavities. Accurate measurement of signals higher than 200 MHz using the generalized lock-in is demonstrated. The technique is compared with a traditional lock-in and its advantages and limitations are discussed.

View Article and Find Full Text PDF

Multiple exciton generation (MEG) is a process in which more than one exciton is generated upon the absorption of a high energy photon, typically higher than two times the band gap, in semiconductor nanocrystals. It can be observed experimentally using time resolved spectroscopy such as the transient absorption measurements. Quantification of the MEG yield is usually done by assuming that the bi-exciton signal is twice the signal from a single exciton.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2dp02eib10da7isuio5fb02ge5sk1qvi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once