Objective: Candida albicans has become a major problem of oral candidiasis due to increase in antibiotic resistance. Rhodomyrtus tomentosa, a medicinal plant possessing several phytochemical constituents, has been considered as a potential source of antimicrobial and immunomodulatory agents. The aim of this study was to investigate anti-virulence and immunostimulatory activity of R.
View Article and Find Full Text PDFVirulence factors regulated by quorum sensing (QS) play a critical role in the pathogenesis of an opportunistic human pathogen, Pseudomonas aeruginosa in causing infections to the host. Hence, in the present work, the anti-virulence potential of the medicinal plant extracts and their derived phytochemicals from Myrtaceae family was evaluated against P. aeruginosa.
View Article and Find Full Text PDFThe study evaluated the efficiency of eugenyl acetate (EA), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Minimum inhibitory concentrations (MIC) of EA against Candida isolates were in the range between 0.1% and 0.
View Article and Find Full Text PDFEnterohaemorrhagic Escherichia coli (E. coli) O157:H7 is one of the most virulent causative agents of foodborne disease. Use of antibiotics for the treatment against E.
View Article and Find Full Text PDFPsoriasis is a skin disease associated with hyperproliferation and abnormal differentiation of keratinocytes. Available approaches using synthetic drugs for the treatment of severe psoriasis may cause side effects. Alternatively, plant-derived compounds are now receiving much attention as alternative candidates for the treatment of psoriasis.
View Article and Find Full Text PDFConsidering the role of virulence factors in bacterial pathogenicity, interfering with the virulence factor production could afford a novel way for the treatment of infections caused by pathogenic bacteria. In the present study, an effect of eugenyl acetate (EA), a well-known phytochemical from Syzygium aromaticum (clove bud) was assessed for its anti-virulence potential against both Gram-negative and Gram-positive pathogens. Eugenyl acetate at 150 µg/ml, significantly inhibited virulence factor production such as pyocyanin and pyoverdin by Pseudomonas aeruginosa ATCC 27853 up to 9.
View Article and Find Full Text PDFQuorum sensing (QS) is a process of cell-cell communication mechanism occurs between the bacterial cells through the secretary signal molecules. This QS mechanism has been shown to control over the expression of various genes responsible for the production of virulence factors in several bacterial pathogens. Hence, the present study was intended to evaluate the antipathogenic potential of mangrove trees of the genus Rhizophora against the QS dependent virulence factors production in Pseudomonas aeruginosa PAO1, clinical isolates CI-I (GU447237) and CI-II (GU447238).
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
October 2013
The present study was carried out to assess the anti-quorum sensing (anti-QS) activity of bark extract obtained from the mangrove plant Rhizophora annamalayana Kathir. against Gram-negative bacteria. In microtitre plate assay, the bark extract at a concentration of 1 mg/ml inhibited the QS-dependent violacein production in Chromobacterium violaceum ATCC 12472.
View Article and Find Full Text PDFIn Pseudomonas aeruginosa, quorum sensing (QS) autoinducer known as acyl homoserine lactone (AHL) acts as a key regulator in the expression of pathogenic characters. In this work, the efficiency of phenylacetic acid (PAA) in reducing the production of AHL-dependent factors in P. aeruginosa PAO1 was studied.
View Article and Find Full Text PDFThe effects of 2,5-piperazinedione in reducing the production of quorum sensing (QS)-dependent factors in Pseudomonas aeruginosa PAO1 were assessed both in vitro and in vivo. 2,5-Piperazinedione exhibited a 69% reduction in the azocasein-degrading proteolytic activity and a 48% reduction in the elastolytic activity of PAO1. Further, it showed 85% and 96% reduction in the production of pyocyanin and extracellular polymeric substances (EPS) of PAO1, respectively.
View Article and Find Full Text PDF