We describe biodegradable mesoporous hybrid nanoparticles (NPs) in the presence of proteins and their applications for drug delivery. We synthesized oxamide phenylene-based mesoporous organosilica nanoparticles (MON) in the absence of a silica source which had remarkably high organic content and high surface areas. Oxamide functions provided biodegradability in the presence of trypsin model proteins.
View Article and Find Full Text PDFBackground: Nanostructures fabricated by different methods have become increasingly important for various applications in biology and medicine, such as agents for medical imaging or cancer therapy. In order to understand their interaction with living cells and their internalization kinetics, several attempts have been made in tagging them. Although methods have been developed to measure the number of nanostructures internalized by the cells, there are only few approaches aimed to measure the number of cells that internalize the nanostructures, and they are usually limited to fixed-cell studies.
View Article and Find Full Text PDFPolydopamine-coated FeCo nanocubes (PDFCs) were successfully synthesized and tested under microwave irradiation of 2.45 GHz frequency and 0.86 W/cm(2) power.
View Article and Find Full Text PDFTotal synthesis of a fungal cyclic peptide, malformin C, recently rediscovered as a G2 checkpoint inhibitor was completed. Our synthesis involved a convergent approach with respect to a linear pentapeptide, cyclization, and oxidative disulfide formation.
View Article and Find Full Text PDF