Multimode fiber-based saturable absorbers enable mode-locking in lasers, generating ultrafast pulses and providing an exceptional platform for investigating nonlinear phenomena. Previous analyses in the continuous-wave (CW) limit showed that saturable absorption can be obtained due to nonlinear interactions between transverse modes. We find experimentally that saturable absorption can be achieved, thanks to the interplay of single-mode fiber nonlinearity and the wavelength-dependent linear transmission of the multimode fiber, even with negligible intermodal nonlinearities.
View Article and Find Full Text PDFWe study experimentally and theoretically the interactions among ultrashort optical pulses in the soliton rain multiple-pulse dynamics of a fiber laser. The laser is mode locked by a graphene saturable absorber fabricated using the mechanical transfer technique. Dissipative optical solitons aggregate into pulse bunches that exhibit complex behavior, which includes acceleration and bidirectional motion in the moving reference frame.
View Article and Find Full Text PDF