Natural antisense transcripts (NATs) are important regulators of gene expression. Recently, a link between antisense transcription and the formation of endo-siRNAs has emerged. We investigated the bi-directionally transcribed Na/phosphate cotransporter gene (Slc34a1) under the aspect of endo-siRNA processing.
View Article and Find Full Text PDFOverlapping sense/antisense RNAs transcribed in opposite directions from the same genomic locus are common in vertebrates. The impact of antisense transcription on gene regulation and cell biology is largely unknown. We show that sense/antisense RNAs of an evolutionarily conserved phosphate transporter gene (Slc34a2a) are coexpressed in a short time window during embryonic development of zebrafish at 48 hours postfertilization (hpf).
View Article and Find Full Text PDFCell Biochem Biophys
January 2003
The epithelial Na/Pi cotransporter (NaPi-II) is instrumental in maintaining phosphate (Pi) homeostasis in vertebrates. Hormones and metabolic factors (PTH, Pi availability) that acutely influence renal Pi excretion have been demonstrated to target NaPi-II expression. Upon stimulation, newly synthesized transporter molecules become integrated into the brush-border membrane to increase the Vmax of Pi uptake; reduction of Pi reabsorption is achieved by endocytosis of NaPi-II followed by lysosomal degradation of the protein.
View Article and Find Full Text PDF