MYB fusions are recurrently found in select cancers, including blastic plasmacytoid DC neoplasm (BPDCN), an acute leukemia with poor prognosis. They are markedly enriched in BPDCN compared with other blood cancers and, in some patients, are the only obvious somatic mutation detected. This suggests that they may alone be sufficient to drive DC transformation.
View Article and Find Full Text PDFProtein lysine acetylation refers to the covalent transfer of an acetyl moiety from acetyl coenzyme A to the epsilon-amino group of a lysine residue and is critical for regulating protein functions in almost all living cells or organisms. Studies in the past decade have demonstrated the unexpected finding that acetylation-like acylation, such as succinylation, propionylation, butyrylation, crotonylation, and lactylation, is also present in histones and many non-histone proteins. Acetylation and acetylation-like acylation serve as reversible on/off switches for regulating protein function while interplaying with other post-translational modifications (such as phosphorylation and methylation) in a codified manner.
View Article and Find Full Text PDFLysine acetyltransferase 6A (KAT6A) and its paralog KAT6B form stoichiometric complexes with bromodomain- and PHD finger-containing protein 1 (BRPF1) for acetylation of histone H3 at lysine 23 (H3K23). We report that these complexes also catalyze H3K23 propionylation in vitro and in vivo. Immunofluorescence microscopy and ATAC-See revealed the association of this modification with active chromatin.
View Article and Find Full Text PDFIdentification of over 500 epigenetic regulators in humans raises an interesting question regarding how chromatin dysregulation contributes to different diseases. Bromodomain and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator possessing three histone-binding domains, one non-specific DNA-binding module, and several motifs for interacting with and activating three lysine acetyltransferases. Genetic analyses of fish brpf1 and mouse Brpf1 have uncovered an important role in skeletal, hematopoietic, and brain development, but it remains unclear how BRPF1 is linked to human development and disease.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) serve as a life-long reservoir for all blood cell types and are clinically useful for a variety of HSC transplantation-based therapies. Understanding the role of chromatin organization and regulation in HSC homeostasis may provide important insights into HSC development. Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator that possesses 4 nucleosome-binding domains and activates 3 lysine acetyltransferases (KAT6A, KAT6B, and KAT7), suggesting that this protein has the potential to stimulate crosstalk between different chromatin modifications.
View Article and Find Full Text PDFTo interpret epigenetic information, chromatin readers utilize various protein domains for recognition of DNA and histone modifications. Some readers possess multidomains for modification recognition and are thus multivalent. Bromodomain- and plant homeodomain-linked finger-containing protein 3 (BRPF3) is such a chromatin reader, containing two plant homeodomain-linked fingers, one bromodomain and a PWWP domain.
View Article and Find Full Text PDFBRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes.
View Article and Find Full Text PDFWith hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity.
View Article and Find Full Text PDFLysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability.
View Article and Find Full Text PDFHistone acetyltransferases (HATs) assemble into multisubunit complexes in order to target distinct lysine residues on nucleosomal histones. Here, we characterize native HAT complexes assembled by the BRPF family of scaffold proteins. Their plant homeodomain (PHD)-Zn knuckle-PHD domain is essential for binding chromatin and is restricted to unmethylated H3K4, a specificity that is reversed by the associated ING subunit.
View Article and Find Full Text PDFEctopic expression of transcription factors has been shown to reprogram somatic cells into induced pluripotent stem (iPS) cells. It remains largely unexplored how this process is regulated by post-translational modifications. Several reprogramming factors possess conserved sumoylation sites, so we investigated whether and how this modification regulates reprogramming of fibroblasts into iPS cells.
View Article and Find Full Text PDFHistone deacetylase 4 (HDAC4) and its paralogs, HDAC5, -7, and -9 (all members of class IIa), possess multiple phosphorylation sites crucial for 14-3-3 binding and subsequent nuclear export. cAMP signaling stimulates nuclear import of HDAC4 and HDAC5, but the underlying mechanisms remain to be elucidated. Here we show that cAMP potentiates nuclear localization of HDAC9.
View Article and Find Full Text PDFMORF [MOZ (monocytic leukemia zinc-finger protein)-related factor] and MOZ are catalytic subunits of histone acetyltransferase (HAT) complexes essential in hematopoiesis, neurogenesis, skeletogenesis and other developmental programs and implicated in human leukemias. The canonical HAT domain of MORF/MOZ is preceded by a tandem of plant homeodomain (PHD) fingers whose biological roles and requirements for MORF/MOZ activity are unknown. Here, we demonstrate that the tandem PHD1/2 fingers of MORF recognize the N-terminal tail of histone H3.
View Article and Find Full Text PDFProtein lysine acetyltransferases (KATs) catalyze acetylation of the ε-amino group on a specific lysine residue, and this posttranslational modification is important for regulating the function and activities of thousands of proteins in diverse organisms from bacteria to humans. Interestingly, many known KATs exist in multisubunit complexes and complex formation is important for their proper structure, function, and regulation. Thus, it is necessary to reconstitute enzymatically active complexes for studying the relationship between subunits and determining structures of the complexes.
View Article and Find Full Text PDFThe high mortality rate of immunocompromised patients with fungal infections and the limited availability of highly efficacious and safe agents demand the development of new antifungal therapeutics. To rapidly discover such agents, we developed a high-throughput synergy screening (HTSS) strategy for novel microbial natural products. Specifically, a microbial natural product library was screened for hits that synergize the effect of a low dosage of ketoconazole (KTC) that alone shows little detectable fungicidal activity.
View Article and Find Full Text PDFCD9 is a glycoprotein of the transmembrane 4 superfamily (TM4SF) and is involved in various cellular processes. In this study, we describe the isolation of the full-length cDNA encoding for CD9 molecule (daCD9) of red stingray, Dasyatis akajei. This 1252 bp cDNA was isolated from leukocyte cDNA library and contains 681 bp open reading frame encoding 226 amino acid residues.
View Article and Find Full Text PDF