Publications by authors named "Kezhe Zhu"

Wireless inertial motion capture holds promise for real-time human-machine interfaces and home-based rehabilitation applications. However, wireless data drop can cause significant estimation errors deteriorating performance or even making the system unusable. It is currently unclear how to estimate non-periodic kinematics with wearable inertial measurement units (IMUs) in the presence of wireless data drop (packet loss).

View Article and Find Full Text PDF

Background: Telerehabilitation is a promising avenue for improving patient outcomes and expanding accessibility. However, there is currently no spine-related assessment for telerehabilitation that covers multiple exercises.

Methods: We propose a wearable system with two inertial measurement units (IMUs) to identify IMU locations and estimate spine angles for ten commonly prescribed spinal degeneration rehabilitation exercises (supine chin tuck head lift rotation, dead bug unilateral isometric hold, pilates saw, catcow full spine, wall angel, quadruped neck flexion/extension, adductor open book, side plank hip dip, bird dog hip spinal flexion, and windmill single leg).

View Article and Find Full Text PDF

Wearable lower-limb joint angle estimation using a reduced inertial measurement unit (IMU) sensor set could enable quick, economical sports injury risk assessment and motion capture; however the vast majority of existing research requires a full IMU set attached to every related body segment and is implemented in only a single movement, typically walking. We thus implemented 3-dimensional knee and hip angle estimation with a reduced IMU sensor set during yoga, golf, swimming (simulated lower body swimming in a seated posture), badminton, and dance movements. Additionally, current deep-learning models undergo an accuracy drop when tested with new and unseen activities, which necessitates collecting large amounts of data for the new activity.

View Article and Find Full Text PDF

Accurate shoulder joint angle estimation is crucial for analyzing joint kinematics and kinetics across a spectrum of movement applications including in athletic performance evaluation, injury prevention, and rehabilitation. However, accurate IMU-based shoulder angle estimation is challenging and the specific influence of key error factors on shoulder angle estimation is unclear. We thus propose an analytical model based on quaternions and rotation vectors that decouples and quantifies the effects of two key error factors, namely sensor-to-segment misalignment and sensor orientation estimation error, on shoulder joint rotation error.

View Article and Find Full Text PDF