Iran J Allergy Asthma Immunol
February 2023
High production of lactic acid is a common feature of various tumors. Lactic acid is an immunosuppressive molecule with crucial roles in tumor cells' immune escape, which could largely be attributed to its negative effects on the T cells present in the tumor microenvironment (TME). Strategies that decrease the glycolysis rate of tumor cells could enhance immunosurveillance and limit tumor growth.
View Article and Find Full Text PDFBackground: Lactic acid produced by tumors has been shown to overcome immune surveillance, by suppressing the activation and function of T cells in the tumor microenvironment. The strategies employed to impair tumor cell glycolysis could improve immunosurveillance and tumor growth regulation. Dichloroacetate (DCA) limits the tumor-derived lactic acid by altering the cancer cell metabolism.
View Article and Find Full Text PDFT-cell immunoglobulin mucin 3 (Tim3) is an immune checkpoint receptor that plays a central role in chimeric antigen receptor (CAR) T cell exhaustion within the tumor microenvironment. This study was aimed to evaluate the effects of targeted-knockdown of Tim3 on the antitumor function of anti-mesothelin (MSLN)-CAR T cells. To knockdown Tim3 expression, three different shRNA sequences specific to different segments of the human Tim3 gene were designed and co-inserted with an anti-MSLN-CAR transgene into lentiviral vectors.
View Article and Find Full Text PDFThe development of chimeric antigen receptor (CAR) T-cell therapy has led to a paradigm shift in cancer treatment. However, patients often do not benefit from CAR T-cell therapy due to poor persistence of the adoptively transferred cells. Development of strategies based on the generation and maintenance of long-lasting memory T cells may expand the therapeutic effects of CAR T cells.
View Article and Find Full Text PDFTherapeutic efficacy of chimeric antigen receptor (CAR) T cells is associated with their expansion, persistence and effector function. Although CAR T cell therapy has shown remarkable therapeutic effects in hematological malignancies, its therapeutic efficacy has been limited in some types of cancers - in particular, solid tumors - partially due to the cells' inability to persist and the acquisition of T cell dysfunction within a harsh immunosuppressive tumor microenvironment. Therefore, it would be expected that generation of CAR T cells with intrinsic properties for functional longevity, such as the cells with early-memory phenotypes, could beneficially enhance antitumor immunity.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T cell therapy is considered as an encouraging approach for the treatment of hematological malignancies. However, its efficacy in solid tumors has not been satisfying, mainly in the immunosuppressive network of the tumor microenvironment and paucity of appropriate target antigens. Mesothelin (MSLN) is a tumor-associated antigen (TAA) expressed in numerous types of solid tumors such as gastrointestinal, ovarian, and pancreatic tumors.
View Article and Find Full Text PDFCAR T cell qualities, such as persistence and functionality play important roles in determining the outcome of cancer immunotherapy. In spite of full functionality, it has been shown that poor persistence of CAR T cells can limit an effective antitumor immune response. Here, we outline specific strategies that can be employed to overcome intrinsic and extrinsic barriers to CAR T cell persistence.
View Article and Find Full Text PDFIn spite of impressive results in the treatment of acute lymphoblastic B cell leukemia (B-ALL) with chimeric antigen receptor (CAR) T cells, the clinical outcome of some hematological cancers like follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL) has not been very promising likely due to immunosuppressive networks within tumor microenvironment. Hypoxia in the microenvironment of hematological malignancies and consequently generation of adenosine molecule is appeared to be correlated with immunosuppression, tumor progression, and relapse. Herein, we hypothesized that whether pharmacological targeting of adenosine 2a receptor (A2aR) can enhance antitumor activity of anti-CD19 CAR T cells in vitro.
View Article and Find Full Text PDFBackground: CAR T cell-based therapies have shown promising results in hematological malignancies. Results of CAR T cell projects in solid tumors have been less impressive, and factors including lack of targetable antigens and immunosuppressive tumor microenvironment (TME) have been suggested as culprits. Adenosine, a metabolite which is highly produced in TME, is known to mediate the suppression of anti-tumor T cell responses via binding and signaling through adenosine 2a receptor (A2aR).
View Article and Find Full Text PDFOvarian cancer is one of the most common causes of mortality throughout the world. Unfortunately, chemotherapy has failed to cure advanced cancers developing multidrug resistance (MDR). Moreover, it has critical side effects because of nonspecific toxicity.
View Article and Find Full Text PDFAlthough remarkable results have been attained by adoptively transferring T cells expressing fully murine and/or humanized anti-CD19 chimeric antigen receptors (CARs) to treat B cell malignancies, evidence of human anti-mouse immune responses against CARs provides a rationale for the development of less immunogenic CARs. By developing a fully human CAR (huCAR), these human anti-mouse immune responses are likely eliminated. This, perhaps, not only increases the persistence of anti-CD19 CAR T cells-thereby reducing the risk of tumor relapse-but also facilitates administration of multiple, temporally separated doses of CAR T cells to the same recipient.
View Article and Find Full Text PDF