Purpose: Deformable image registration (DIR) plays a critical role in adaptive radiation therapy (ART) to accommodate anatomical changes. However, conventional intensity-based DIR methods face challenges when registering images with unequal image intensities. In these cases, DIR accuracy can be improved using a hybrid image similarity metric which matches both image intensities and the location of known structures.
View Article and Find Full Text PDFPhoton-counting computed tomography (PCCT) marks a significant advancement over conventional energy-integrating detector (EID) CT systems. This review highlights PCCT's superior spatial and contrast resolution, reduced radiation dose, and multi-energy imaging capabilities, which address key challenges in radiotherapy, such as accurate tumor delineation, precise dose calculation, and treatment response monitoring. PCCT's improved anatomical clarity enhances tumor targeting while minimizing damage to surrounding healthy tissues.
View Article and Find Full Text PDFImage registration is an inherently ill-posed problem that lacks the constraints needed for a unique mapping between voxels of the two images being registered. As such, one must regularize the registration to achieve physically meaningful transforms. The regularization penalty is usually a function of derivatives of the displacement-vector field and can be calculated either analytically or numerically.
View Article and Find Full Text PDF