Caffeic acid-3-O-methyltransferase (COMT) serves as the final pivotal enzyme in melatonin biosynthesis and plays a crucial role in governing the synthesis of melatonin in plants. This research used bioinformatics to analyze the phylogenetic relationships, gene structure, and promoter cis-acting elements of the upland cotton COMT gene family members, which it identified as the key gene GhCOMT33D to promote melatonin synthesis and responding to Cd stress. After silencing GhCOMT33D through virus-induced gene silencing (VIGS), cotton seedlings showed less resistance to Cd stress.
View Article and Find Full Text PDFTwo genomic regions associated with FFBN and HFFBN and a potential regulatory gene (GhE6) of HFFBN were identified through the integration of RTM-GWAS and meta‑QTL analyses. Abstract The first fruit branch node (FFBN) and the height of the first fruit branch node (HFFBN) are two important traits that are related to plant architecture and early maturation in upland cotton. Several studies have been conducted to elucidate the genetic basis of these traits in cotton using biparental and natural populations.
View Article and Find Full Text PDFThe VIM (belonged to E3 ubiquitin ligase) gene family is crucial for plant growth, development, and stress responses, yet their role in salt stress remains unclear. We analyzed phylogenetic relationships, chromosomal localization, conserved motifs, gene structure, cis-acting elements, and gene expression patterns of the VIM gene family in four cotton varieties. Our findings reveal 29, 29, 17, and 14 members in Gossypium hirsutum (G.
View Article and Find Full Text PDFPlants experience diverse abiotic stresses, encompassing low or high temperature, drought, water logging and salinity. The challenge of maintaining worldwide crop cultivation and food sustenance becomes particularly serious due to drought and salinity stress. Sustainable agriculture has significant promise with the use of nano-biotechnology.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
January 2020
The effects of 20%-40% fertilizer reduction and different organic fertilizers on soil microbial biomass, enzyme activity and cotton yield were examined for three consecutive years in Hexi area of Gansu, Northwest China. The results showed that compared with single chemical fertilizer application, the abundance of soil bacteria and actinomycetes were significantly increased while that of fungi were decreased with chemical fertilizer reduction combined with organic fertilizer. The abundance of soil bacteria was maximum under the treatment of chemical fertilizer reduction combined with common organic fertilizer and bio-organic fertilizer (COBF), which was 84.
View Article and Find Full Text PDF