Impaired clearance of amyloid β (Aβ) in late-onset Alzheimer's disease (AD) affects disease progression. The role of peripheral monocytes in Aβ clearance from the central nervous system (CNS) is unclear. We use a flow cytometry assay to identify Aβ-binding monocytes in blood, validated by confocal microscopy, Western blotting, and mass spectrometry.
View Article and Find Full Text PDFThe two hallmarks of Alzheimer's disease (AD) are amyloid-β (Aβ) plaques and neurofibrillary tangles marked by phosphorylated tau. Increasing evidence suggests that aggregating Aβ drives tau accumulation, a process that involves synaptic degeneration leading to cognitive impairment. Conversely, there is a realization that non-fibrillar (oligomeric) forms of Aβ mediate toxicity in AD.
View Article and Find Full Text PDFProtein citrullination (deimination of arginine residue) is a well-known biomarker of inflammation. Elevated protein citrullination has been shown to colocalize with extracellular amyloid plaques in AD patient brains. Amyloid-β (Aβ) peptides which aggregate and accumulate in the plaques of Alzheimer's disease (AD) have sequential N-terminal truncations and multiple post-translational modifications (PTM) such as isomerization, pyroglutamate formation, phosphorylation, nitration, and dityrosine cross-linking.
View Article and Find Full Text PDFPlaques that characterize Alzheimer's disease accumulate over 20 years as a result of decreased clearance of amyloid-β peptides. Such long-lived peptides are subjected to multiple post-translational modifications, in particular isomerization. Using liquid chromatography ion mobility separations mass spectrometry, we characterized the most common isomerized amyloid-β peptides present in the temporal cortex of sporadic Alzheimer's disease brains.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the leading cause of dementia worldwide accounting for around 70% of all cases. There is currently no treatment for AD beyond symptom management and attempts at developing disease-modifying therapies have yielded very little. These strategies have traditionally targeted the peptide Aβ, which is thought to drive pathology.
View Article and Find Full Text PDFIntroduction: We are developing a second generation 8-OH quinoline (2-(dimethylamino) methyl-5, 7-dichloro-8-hydroxyquinoline [PBT2, Prana Biotechnology]) for targeting amyloid β (Aβ) in Alzheimer's disease (AD). In an earlier phase IIa, 3 month trial, PBT2 lowered cerebrospinal fluid Aβ by 13% and improved cognition (executive function) in a dose-related fashion in early AD. We, therefore, sought to learn whether PBT2 could alter the Aβ-PET signal in subjects with prodromal or mild AD, in an exploratory randomized study over a 12-month phase in a double-blind and a 12-month open label extension phase trial design.
View Article and Find Full Text PDFBiomarkers enabling the preclinical identification of Alzheimer's disease (AD) remain one of the major unmet challenges in the field. The blood cellular fractions offer a viable alternative to current cerebrospinal fluid and neuroimaging modalities. The current study aimed to replicate our earlier reports of altered binding within the AD-affected blood cellular fraction to copper-loaded immobilized metal affinity capture (IMAC) arrays.
View Article and Find Full Text PDFOligomeric forms of amyloid-β (Aβ) are thought to be responsible for the pathogenesis of Alzheimer's disease. While many oligomers of Aβ are thought to be naturally occurring in the brain of humans and/or transgenic animals, it is well known that Aβ oligomers are also readily produced in vitro in the laboratory. In recent studies, we discovered that synthetic monomeric Aβ (4.
View Article and Find Full Text PDFExpression of human amyloid-β (Aβ) in Drosophila is frequently used to investigate its toxicity in vivo. We expressed Aβ1-42 in the fly using a secretion signal derived from the Drosophila necrotic gene, as described in several previous publications. Surface-enhanced laser desorption/ionization TOF MS analysis revealed that the Aβ produced contained an additional glutamine residue at the N-terminus.
View Article and Find Full Text PDFReducing amyloid-β peptide (Aβ) burden at the pre-symptomatic stages of Alzheimer's disease (AD) is currently the advocated clinical strategy for treating this disease. The most developed method for targeting Aβ is the use of monoclonal antibodies including bapineuzumab, solanezumab and crenezumab. We have synthesized these antibodies and used surface plasmon resonance (SPR) and mass spectrometry to characterize and compare the ability of these antibodies to target Aβ in transgenic mouse tissue as well as human AD tissue.
View Article and Find Full Text PDFBackground: A practical biomarker is required to facilitate the preclinical diagnosis of Alzheimer's disease (AD).
Methods: Plasma amyloid beta (Aβ)1-40, Aβ1-42, Aβn-40, and Aβn-42 peptides were measured at baseline and after 18 months in 771 participants from the Australian Imaging Biomarkers and Lifestyle (AIBL) study of aging. Aβ peptide levels were compared with clinical pathology, neuroimaging and neuropsychological measurements.
The formation of low-order oligomers of β-amyloid (Aβ) within the brain is widely believed to be a central component of Alzheimer's disease (AD) pathogenesis. However, despite advances in high-throughput and high-resolution techniques such as xMAP and mass spectrometry (MS), investigations into these oligomeric species have remained reliant on low-resolution Western blots and enzyme-linked immunosorbent assays. The current investigation compared Aβ profiles within human cortical tissue using sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis (PAGE), xMAP and surface enhanced laser desorption/ionization time-of-flight MS and found that whilst there was significant correlation across the techniques regarding levels of monomeric Aβ, only SDS-PAGE was capable of detecting dimeric isoforms of Aβ.
View Article and Find Full Text PDFEffective therapeutic interventions for Alzheimer's disease (AD) will require treatment regimes to move toward the earliest stages of the disease. For this to occur the field has to identify biomarkers that are able to accurately identify individuals at risk for progression toward AD in the presymptomatic stage. One very significant implication is that some form of population-based screening will need to be undertaken in order to identify those at risk.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a highly heterogeneous and progressive dementia which is characterised by a progressive decline in cognitive functioning, selective neuronal atrophy, and loss of cortical volume in areas involved in learning and memory. However, recent research has indicated that the AD-affected brain is also besieged by increases in oxidative stress as well as perturbations to the homeostasis of biometals, such as copper and iron. These metals are known to interact with the neuropathological hallmark of AD, the β-amyloid peptide (Aβ), in a manner which increases Aβ's neurotoxic effects.
View Article and Find Full Text PDFDiagnostic measures for Alzheimer's disease (AD) commonly rely on evaluating the levels of amyloid-β (Aβ) peptides within the cerebrospinal fluid (CSF) of affected individuals. These levels are often combined with levels of an additional non-Aβ marker to increase predictive accuracy. Recent efforts to overcome the invasive nature of CSF collection led to the observation of Aβ species within the blood cellular fraction, however, little is known of what additional biomarkers may be found in this membranous fraction.
View Article and Find Full Text PDFAlzheimer's Disease (AD) is complicated by pro-oxidant intraneuronal Fe(2+) elevation as well as extracellular Zn(2+) accumulation within amyloid plaque. We found that the AD β-amyloid protein precursor (APP) possesses ferroxidase activity mediated by a conserved H-ferritin-like active site, which is inhibited specifically by Zn(2+). Like ceruloplasmin, APP catalytically oxidizes Fe(2+), loads Fe(3+) into transferrin, and has a major interaction with ferroportin in HEK293T cells (that lack ceruloplasmin) and in human cortical tissue.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common age-related dementia. Unfortunately due to a lack of validated biomarkers definitive diagnosis relies on the histological demonstration of amyloid-beta (Abeta) plaques and tau neurofibrillary tangles. Abeta processing is implicated in AD progression and many therapeutic strategies target various aspects of this biology.
View Article and Find Full Text PDFInclusions of aggregated alpha-synuclein (alpha-syn) in dopaminergic neurons are a characteristic histological marker of Parkinson's disease (PD). In vitro, alpha-syn in the presence of dopamine (DA) at physiological pH forms SDS-resistant non-amyloidogenic oligomers. We used a combination of biophysical techniques, including sedimentation velocity analysis, small angle X-ray scattering (SAXS) and circular dichroism spectroscopy to study the characteristics of alpha-syn oligomers formed in the presence of DA.
View Article and Find Full Text PDFAmyloid-beta peptide (Abeta) toxicity is thought to be responsible for the neurodegeneration associated with Alzheimer's disease. While the mechanism(s) that modulate this toxicity are still widely debated, it has previously been demonstrated that modifications to the three histidine residues (6, 13, and 14) of Abeta are able to modulate the toxicity. Therefore to further elucidate the potential role of the histidine (H) residues in Abeta toxicity, we synthesized Abeta peptides with single alanine substitutions for each of the three histidine residues and ascertained how these substitutions affect peptide aggregation, metal binding, redox chemistry, and cell membrane interactions, factors which have previously been shown to modulate Abeta toxicity.
View Article and Find Full Text PDFTransgenic expression of human amyloid beta (A beta) peptide in body wall muscle cells of Caenorhabditis elegans has been used to better understand aspects of Alzheimer disease (AD). In human aging and AD, A beta undergoes post-translational changes including covalent modifications, truncations, and oligomerization. Amino truncated A beta is increasingly recognized as potentially contributing to AD pathogenesis.
View Article and Find Full Text PDFPrevious studies suggest membrane binding is a key determinant of amyloid β (Aβ) neurotoxicity. However, it is unclear whether this interaction is receptor driven. To address this issue, a D-handed enantiomer of Aβ42 (D-Aβ42) was synthesized and its biophysical and neurotoxic properties were compared to the wild-type Aβ42 (L-Aβ42).
View Article and Find Full Text PDFalpha-Synuclein is the major component of the intracellular Lewy body inclusions present in Parkinson disease (PD) neurons. PD involves the loss of dopaminergic neurons in the substantia nigra and the subsequent depletion of dopamine (DA) in the striatum. DA can inhibit alpha-synuclein fibrillization in vitro and promote alpha-synuclein aggregation into soluble oligomers.
View Article and Find Full Text PDFAccumulation of neurotoxic amyloid-beta (Abeta) is central to the pathology of Alzheimer's disease (AD). Elucidating the mechanisms of Abeta accumulation will therefore expedite the development of Abeta-targeting AD therapeutics. We examined activity of an Abeta-degrading protease (matrix metalloprotease 2) to investigate whether biochemical factors consistent with conditions in the AD brain contribute to Abeta accumulation by altering Abeta sensitivity to proteolytic degradation.
View Article and Find Full Text PDF