Objective: The prediction of upcoming circular walking during linear walking is important for the usability and safety of the interaction between a lower limb assistive device and the wearer. This study aims to build a bilateral elimination rule-based finite class Bayesian inference system (BER-FC-BesIS) with the ability to predict the transition between circular walking and linear walking using inertial measurement units.
Methods: Bilateral motion data of the human body were used to improve the recognition and prediction accuracy of BER-FC-BesIS.
Introduction: Reinforcement learning has been widely used in robot motion planning. However, for multi-step complex tasks of dual-arm robots, the trajectory planning method based on reinforcement learning still has some problems, such as ample exploration space, long training time, and uncontrollable training process. Based on the dual-agent depth deterministic strategy gradient (DADDPG) algorithm, this study proposes a motion planning framework constrained by the human joint angle, simultaneously realizing the humanization of learning content and learning style.
View Article and Find Full Text PDF