Publications by authors named "Key Jo Hong"

In this study, preclinical experiments were performed with an in-house developed prototypal photon-counting detector computed tomography (PCD CT) system. The performance of the system was compared with the conventional energy-integrating detector (EID)-based CT, concerning the basic image quality biomarkers and the respective capacities for material separation. The pre- and the post-contrast axial images of a canine brain captured by the PCD CT and EID CT systems were found to be visually similar.

View Article and Find Full Text PDF

We confirmed the feasibility of using our proposed system to extract two different kinds of functional images from a positron emission tomography (PET) module by using an insertable collimator during boron neutron capture therapy (BNCT). Coincidence events from a tumor region that included boron particles were identified by a PET scanner before BNCT; subsequently, the prompt gamma ray events from the same tumor region were collected after exposure to an external neutron beam through an insertable collimator on the PET detector. Five tumor regions that contained boron particles and were located in the water phantom and in the BNCT system with the PET module were simulated with Monte Carlo simulation code.

View Article and Find Full Text PDF

In the field of information theory, compressed sensing (CS) had been developed to recover signals at a lower sampling rate than suggested by the Nyquist-Shannon theorem, provided the signals have a sparse representation with respect to some base. CS has recently emerged as a method to multiplex PET detector readouts thanks to the sparse nature of 511 keV photon interactions in a typical PET study. We have shown in our previous numerical studies that, at the same multiplexing ratio, CS achieves higher signal-to-noise ratio (SNR) compared to Anger and cross-strip multiplexing.

View Article and Find Full Text PDF

Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations.

Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections.

View Article and Find Full Text PDF

Purpose: The aim of this study was to develop a prototype magnetic resonance (MR)-compatible positron emission tomography (PET) that can be inserted into a MR imager and that allows simultaneous PET and MR imaging of the human brain. This paper reports the initial results of the authors' prototype brain PET system operating within a 3-T magnetic resonance imaging (MRI) system using newly developed Geiger-mode avalanche photodiode (GAPD)-based PET detectors, long flexible flat cables, position decoder circuit with high multiplexing ratio, and digital signal processing with field programmable gate array-based analog to digital converter boards.

Methods: A brain PET with 72 detector modules arranged in a ring was constructed and mounted in a 3-T MRI.

View Article and Find Full Text PDF

Purpose: In recent times, there has been great interest in the use of Geiger-mode avalanche photodiodes (GAPDs) as scintillator readout in positron emission tomography (PET) detectors because of their advantages, such as high gain, compact size, low power consumption, and magnetic field insensitivity. The purpose of this study was to develop a novel PET system based on GAPD arrays for brain imaging.

Methods: The PET consisted of 72 detector modules arranged in a ring of 330 mm diameter.

View Article and Find Full Text PDF

Purpose: A new positron emission tomography (PET) detector signal processing method, the charge signal transmission approach, is proposed for the development of a hybrid PET-magnetic resonance imaging (MRI). A number of experiments were performed to demonstrate that the Geiger-mode avalanche photodiode (GAPD) charge output could be transmitted to a preamplifier using a long cable without degrading the PET signal performance.

Methods: A PET module consisted of LYSO and a GAPD with a 4 x 4 array.

View Article and Find Full Text PDF

Several groups have reported the development of dual modality Gamma camera/optical imagers, which are useful tools for investigating biological processes in experimental animals. While previously reported dual modality imaging instrumentation usually employed a separated gamma camera and optical imager, we designed a detector using a position sensitive photomultiplier tube (PSPMT) that is capable of imaging both gamma rays and optical photons for combined gamma camera and optical imager. The proposed system consists of a parallel-hole collimator, an array-type crystal and a PSPMT.

View Article and Find Full Text PDF

The purpose of this study was to improve the performance of a small gamma camera, utilizing a NaI(Tl) plate and a 5" position sensitive PMT. We attempted to build a NaI(Tl) plate crystal system which retained all its advantages, while at the same time integrating some of the advantages inherent in an array-type scintillation crystal system. Flood images were obtained with a lead hole mask, and position mapping was performed by detecting hole positions in the flood image.

View Article and Find Full Text PDF