Publications by authors named "Kexian Chen"

Article Synopsis
  • - A new, environmentally friendly method for detecting triazole fungicides in water samples has been developed, utilizing a switchable deep eutectic solvent that can toggle between hydrophilic and hydrophobic states through temperature changes.
  • - The method is validated using high-performance liquid chromatography with ultraviolet detection, demonstrating excellent accuracy and linearity for measuring pesticide residues, with limits of detection as low as 2.3 μg/L.
  • - This technique represents a significant advancement in pesticide analysis, allowing for quick and efficient extraction without the need for harmful organic solvents, highlighting its applicability in sustainable agricultural practices.
View Article and Find Full Text PDF

3D printing technology is promising in creating specialized functional foods, such as high-protein and high dietary fiber noodles. In this study, chicken breast-based noodles with varying proportions of oat bran and konjac flour were developed. The research analyzed the physicochemical, digestive properties, and 3D printability of these chicken-based doughs and noodles.

View Article and Find Full Text PDF
Article Synopsis
  • - Antibiotic residues in the environment can lead to drug-resistant bacteria, posing a severe risk to human health and the ecosystem, making the development of effective extraction methods for antibiotics in water critical.
  • - Researchers created a novel way to extract antibiotics using pH-responsive supramolecular deep eutectic solvents (SUPRADESs), which transitioned between hydrophilic and hydrophobic states to achieve efficient extraction, combined with advanced mass spectrometry techniques.
  • - The new method showed high effectiveness, recovering 70.1-115.3% of 28 different antibiotics from wastewater samples, demonstrating its potential as an innovative and reliable approach for monitoring and managing antibiotic contamination in the environment.
View Article and Find Full Text PDF

This study aimed to extract bamboo shoot protein (BSP) using different extraction approaches and compare their functional and physicochemical properties with commercial protein ingredients, including whey protein and soy protein isolates. The extraction methods including alkali extraction (AE), salt extraction (SE), and phosphate-aided ethanol precipitation (PE) were used. An enhanced solvent extraction method was utilized in combination, resulting in a significant improvement in the protein purity, which reached 81.

View Article and Find Full Text PDF

Although recent evidence indicated significant phenol and alkylamide interaction in aqueous solutions, the gastrointestinal digestion influence of the combination remains unclear. This study aims to investigate phenol and alkylamide interaction during in vitro digestion, focusing on bioaccessibility and bioactivity, including α-glucosidase inhibition and cellular antioxidant activity. Additionally, the structural mechanism of phenol and alkylamide interaction during in vitro digestion was explored.

View Article and Find Full Text PDF

Aims: Previous studies have investigated the relationship between heart failure (HF) and levels of zinc and copper, but conflicting results have been reported. This meta-analysis aims to clarify the role of zinc and copper in HF progression by examining the associations between HF and concentrations of these minerals.

Methods And Results: We utilized STATA 12.

View Article and Find Full Text PDF

To better understand the structural changes of sanshool pungent dietary components during the process and preservation of Sichuan pepper and pungent foods, the mechanistic insights into the intrinsic degradation and transformation of 16 hydroxy-α-sanshool conformers have been explored computationally. Our results have revealed that increasing the cis-CC bond numbers in the most stable all-trans hydroxy-β-sanshool structure causes the maximum 34.21 kJ/mol conformational energetic difference, and the existent probability of C2nnn would be lower than that of C1nnn (n = 1,2).

View Article and Find Full Text PDF
Article Synopsis
  • Hydrogel created from glycated soy protein isolate (SPI) conjugates shows potential for targeted delivery of bioactive compounds in the gastrointestinal tract.
  • The study involved the preparation of SPI conjugates using dextran through heating, examining various properties like digestion behavior and capacity to encapsulate curcumin.
  • Results indicated that SPI-dextran hydrogels had a more uniform structure but lower mechanical strength compared to other hydrogels, with higher molecular weight dextran improving gel performance and gastrointestinal resistance.
View Article and Find Full Text PDF

Glycated conjugation of plant protein such as soy protein isolate (SPI) with saccharides is one popular strategy to modify the physicochemical characteristics of these plant protein resources, which may be affected by the glycation methods including dry-heating and wet-heating. In this study, the impact of these two glycation methods on the rheological and emulsifying properties of a binary system made by SPI-gum Arabic (GA) was studied. The results indicated that dry-heating conjugates had higher viscosity and more elastic characteristics than those wet-heating conjugates.

View Article and Find Full Text PDF

Functionalized small-molecule assemblies can exhibit nano-delivery properties that significantly improve the bioavailability of bioactive molecules. This study explored the self-assembly of short-chain fatty acids (FA, Cn < 8) to form novel biomimetic nanovesicles as delivery systems. Lactic acid is involved in the regulation of multiple signaling pathways in cancer metabolism, and the dissociation of lactic acid (LA) is used to regulate the delivery effect of short-chain fatty acid vesicles.

View Article and Find Full Text PDF

The molecular basis of the pungency of sanshool dietary components from the Zanthoxylum species has been firstly addressed by constructing the statistically significant and highly predictive quantitative structure-pungency relationship models along with the pharmacophore models. The important pungent structural characters in the isobutylamide moiety and linear carbon chains were elucidated in this study that maintained the suitable spatial packing and electrostatic interactions with their receptors. Our results also revealed that the amide moiety, N-isobutyl moiety with suitable bulky and restricted electronegative substituents, and the relatively long straight carbon chains with suitable (conjugated) CC bonds or heteroatoms at regular intervals were essential for the high pungency.

View Article and Find Full Text PDF

The mechanistic insights into the oral pungency of capsaicin-related dietary components have been elucidated from the spatial structural perspectives by establishing statistically significant and highly predictive three-dimensional quantitative structure-property relationship models. Our results visualized the possible favorable and unfavorable steric and electrostatic interactions with the pungent receptors with the assistance of pharmacophore models, and revealed the suitable electronegative/positive or bulky substitutions in the vanillyl group, amide moiety, linear alkyl chain and their adjacent structural area of capsaicin required for the desired pungency, which was not only complementary to the viewpoints proposed in our previous structure-pungency correlations, but also was applied to clearly clarify the pungent differences in compounds, and well predict the pungency of 21 capsaicin analogs though with ambiguous experimental data on pungency. Hopefully, this work would benefit the overall understanding of the pungent mechanism and facile discovery/design of analogs with desired pungency to expand their applications in foods.

View Article and Find Full Text PDF

The physicochemical mechanism of starch digestion is very complicated since it may be affected by the non-valence interactions of the amylase inhibitor with the substrate or the enzyme. The role of hydrophobic interaction in the process of starch digestion is not clear. In this study, pluronics (PLs) with different hydrophobicity were used as model amphiphilic compounds to study their inhibition on starch digestion using multi-spectroscopic methods.

View Article and Find Full Text PDF

Capsaicinoids and capsinoids from dietary peppers have promising sensory properties and bioactivity, but the molecular basis of their penetration mechanism through cell lipid bilayers and its relationship to their bioavailability as food constituents are still poorly understood. Herein, statistically significant linear and quadratic quantitative structure-activity relationships were constructed to derive the essential structural elements required for their bioactivity against the elongation of etiolated wheat coleoptiles that mainly occurs via penetration. The resultant optimal models had high predictivity and reliability (r > 0.

View Article and Find Full Text PDF

Control of lipid digestibility by various food components has received great attention in recent decades. However, there is limited literature on investigating the synergistic effect of exogenous emulsifiers and endogenous sodium cholate (SC) on lipid digestion in a simulated physiological crowded medium. In this work, the synergistic interaction of Tween80 and SC according to the regular solution theory, and the hydrolysis of lipid emulsions containing tricaprylin, glyceryltrioleate or soybean oil in crowding medium was studied.

View Article and Find Full Text PDF

A novel metallosupramolecular polypseudorotaxane constructed by metal coordination and pillar[6]arene-based molecular recognition was built. First, a [2]pseudorotaxane based on a mono(ethylene oxide) substituted pillar[6]arene P6 and a paraquat derivative guest G was prepared. Then Ag was used to fabricate the metallosupramolecular polypseudorotaxane based on a metal coordination polymer backbone.

View Article and Find Full Text PDF

The harmful health effects caused by phthalic acid esters have been supported from the increasing scientific evidence, developing the efficient methodologies to monitor the levels of phthalic acid esters in various foods become especially important from the aspects of human exposure assessment and their migration mechanistic understanding. In this study, quantitative structure-retention relationship studies on both the gas and liquid chromatographic retention times of 23 phthalic acid esters were performed by genetic function approximation, and the optimal quantitative structure-retention relationship models (r  > 0.980, r  > 0.

View Article and Find Full Text PDF

Vesicles possess unique biofilm structures and offer biomimetic advantages for drug and gene delivery. Herein, we report the spontaneous vesicle formation from ultrashort alkyl-phosphonic acids in the presence of amino acids. The aggregation characteristics and self-assembly structures of vesicles in aqueous solution were investigated by using dynamic light scattering, zeta potential, and cryo-transmission electron microscopy.

View Article and Find Full Text PDF

The comprehensive mechanistic understanding of pungency and the binding interactions between pungent capsaicinoids from foods and their receptors have attracted increasing attention in food sensory and pharmaceutical fields. In this study, linear and quadratic statistically significant quantitative structure-pungency correlations have firstly been established for capsaicinoids by combining genetic function approximation and brute force approach and subsequently validated by the tests of cross validation, randomization, external prediction, Roy's r metrics and Golbraikh-Tropsha's criteria. The resultant optimal predictive correlation models have strong internal and external predictive capacities (r = 0.

View Article and Find Full Text PDF

The properties of vesicles formed from the self-assembly of amphiphilic molecules can mimic the functionality of the natural lipid membranes. In this study, the self-assembly process of the amphiphilic structures formed by the interaction between ultra-small fatty acids [FAs, Cn (n = 4-8)] and amino acids (AAs) to generate vesicles under aqueous conditions were investigated in detail, along with the corresponding dynamic vesiculation mechanisms. Our results showed that the molar ratio of FAs/AAs and the chain length of FAs largely affected the structural characteristics and dispersion of vesicles.

View Article and Find Full Text PDF

The relationship between the homolytic O-H bond dissociation enthalpies (BDEs) and the structures of N-oxyl radical precursors (i.e. hydroxylamines and oximes) is important to predict their reactivity.

View Article and Find Full Text PDF

A novel preorganized and rigid iodide anion macrocyclic receptor, cyclo[4]carbazole (Cy[4]C), is reported here. The structure of Cy[4]C was confirmed by single-crystal X-ray analysis. The binding affinity of Cy[4]C for iodide anion was investigated by UV-vis and H NMR spectroscopic techniques.

View Article and Find Full Text PDF

Quaternary ammonium-based polymeric ionic liquids (PILs) are novel CO2 sorbents as they have high capacity, high stability and high binding energy. Moreover, the binding energy of ionic pairs to CO2 is tunable by changing the hydration state so that the sorbent can be regenerated through humidity adjustment. In this study, theoretical calculations were conducted to reveal the mechanism of the humidity swing CO2 adsorption, based on model compounds of quaternary ammonium cation and carbonate anions.

View Article and Find Full Text PDF

The conformations, electronic properties, and interaction energies of four chelate-based ionic liquids [Li(EA)][Tf2N], [Li(HDA)][Tf2N], [Li(DEA)][Tf2N], and [Li(DOBA)][Tf2N] have been theoretically explored. The reliability of the located conformers has been confirmed via the comparison between the simulated and experimental infrared spectra. Our results show that the N-Li and O-Li coordinate bonds in cation are elongated as the numbers of coordinate heteroatoms of alkanolamine ligands to Li(+) increased.

View Article and Find Full Text PDF

The C-D bond stretching vibrations of deuterated dimethyl sulfoxide ([D6 ]DMSO) and the C2 -H bond stretching vibrations of 1,1,1,5,5,5-hexafluoropentane-2,4-dione (hfac) ligand in anion are chosen as probes to elucidate the solvent-solute interaction between chelate-based ionic liquids (ILs) and DMSO by vibrational spectroscopic studies. The indirect effect from the interaction of the adjacent S=O functional group of DMSO with the cation [C10 mim](+) and anion [Mn(hfac)3 ](-) of the ILs leads to the blue-shift of the C-D stretching vibrations of DMSO. The C2 -H bond stretching vibrations in hfac ligand is closely related to the ionic hydrogen bond strength between the cation and anion of chelate-based ILs.

View Article and Find Full Text PDF