Publications by authors named "Kewei Liao"

Continuously tightening total nitrogen (TN) discharge standards in wastewater treatment plants is a common practice worldwide to mitigate eutrophication. However, given the different bioavailability of effluent dissolved organic nitrogen (DON) and inorganic nitrogen, a great inefficiency of the TN-targeted upgrading might be hidden because of the poor understanding of its impact on effluent eutrophication potential mitigation. Here we show that the tightening TN discharge standards could only considerably promote inorganic nitrogen removal, however, DON concentrations remained constant across different effluent TN levels (p > 0.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) in actual industrial wastewater comprises various compounds that trigger toxicity in aquatic organisms; thus, advanced treatment for reducing DOM toxicity is urgently needed to ensure safe effluent discharge. Herein, we successfully reduced the toxicity of DOM in actual industrial wastewater without external chemical addition by applying intermittent polarization to electrochemical bioreactors. The bioreactor operated under intermittent polarization effectively reduced the toxicity of DOM by 76.

View Article and Find Full Text PDF

With global eutrophication and increasingly stringent nitrogen discharge restrictions, dissolved organic nitrogen (DON) holds considerable potential to upgrade advanced wastewater denitrification because of its large contribution to low-nitrogen effluents and stronger stimulation effect for algae. Here, we show that DON from the postdenitrification systems dominates effluent eutrophication potential under different carbon sources. Methanol resulted in significantly lower DON concentrations (0.

View Article and Find Full Text PDF

Researchers and engineers are committed to finding effective approaches to reduce dissolved organic nitrogen (DON) to meet more stringent effluent total nitrogen limits and minimize effluent eutrophication potential. Here, we provided a promising approach by adding specific doses of 2-hydroxy-1,4-naphthoquinone (HNQ) to postdenitrification bioreactors. This approach of adding a small dosage of 0.

View Article and Find Full Text PDF

Dissolved organic sulfur (DOS) is a significant part of effluent organic matter of wastewater treatment plants (WWTPs) and poses a potential ecological risk for receiving waters. However, the oxic process is a critical unit of biological wastewater treatment for microorganisms performing organic matter removal, wherein DOS transformation and its mechanism are poorly understood. This study investigated the transformation of DOS during the oxic process in 47 full-scale municipal WWTPs across China from molecular and microbial aspects.

View Article and Find Full Text PDF

The presence of dissolved organic nitrogen (DON) in biological nutrient removal (BNR) effluent has led to increased concern about its adverse effects on wastewater discharge and reuse applications. Previous studies have demonstrated efficient biological inorganic nitrogen removal in BNR under low dissolved oxygen (DO) conditions; however, information on DON is scarce. This study investigated low-DO effects on DON and N-nitrosodimethylamine (NDMA) precursor concentrations in BNR effluents.

View Article and Find Full Text PDF

Knowledge of endogenous-source dissolved organic nitrogen (esDON) produced in wastewater treatment processes is critical for evaluating its potential impacts on receiving waters because esDON is a recognized concern, as it causes eutrophication. However, differentiating esDON from influent residual DON in real wastewater is always a challenge. Here, we deciphered esDON information in DON transformation processes along a full-scale wastewater treatment train by combining multiple chemometric tools with ion-mobility separation quadrupole time-of-flight mass spectrometry (IMS-QTOF MS) analyses.

View Article and Find Full Text PDF

Regulation of process parameters is a cost-effective approach to control microorganism-derived dissolved organic nitrogen (mDON) formation in low-temperature biological wastewater conditions. However, the integrated influence of multiple parameters in this process is poorly defined. In this study, mathematical methodology was used to evaluate the combined effects of hydraulic retention time (HRT), solids retention time (SRT), and mixed liquor suspended solids (MLSS) on mDON formation at 8 °C.

View Article and Find Full Text PDF

Microorganism-derived dissolved organic nitrogen (mDON) represents a significant and inevitable portion of dissolved organic nitrogen (DON) in the wastewater biotreatment processes. In the existing method, mDON concentrations are indirectly measured by the values of DON concentrations from the reactors with DON-free influent. However, this becomes problematic when influent contains DON.

View Article and Find Full Text PDF

Sewage sludge (SS) alkaline fermentation (especially at pH 10) can efficiently enhance volatile fatty acids (VFAs) production. VFAs are considered an excellent carbon source for the biological nutrient removal (BNR) process. Dissolved organic matter (DOM) in fermentation liquid is the direct substrate used for producing VFAs and can greatly influence the effluent quality of BNR process.

View Article and Find Full Text PDF

Previous research has focused on dissolved organic carbon (DOC) as a surrogate for soluble microbial products (SMPs) and found that temperature has a significant influence on the production of SMP-based DOC (SDOC) during biological processes. Little is known about the SMP-based dissolved organic nitrogen (SDON), although some nitrogenous organic matter has been identified as an important part of SMPs. This study investigated the effect of temperature (8 °C, 15 °C and 25 °C) on the characterization of SMPs in an activated sludge system with special emphasis on SDON.

View Article and Find Full Text PDF

Dissolved organic nitrogen (DON) formed by microbial metabolism in wastewater treatment processes adversely impacts wastewater reuse and receiving waters quality, and microbial metabolism is greatly influenced by temperatures. However, little is known about the effect of microorganisms on DON and bioavailable DON (ABDON) formation under low temperatures. In this study, six reactors were operated at low (8 °C and 15 °C) and room (25 °C) temperatures to evaluate the relationship between microbial activity, microbial communities, and DON and ABDON.

View Article and Find Full Text PDF

Wastewater-derived dissolved organic nitrogen (DON) should be minimized by municipal wastewater treatment plants (MWWTPs) to reduce its potential impact on receiving waters. Solids retention time (SRT) is a key control parameter for the activated sludge (AS) process; however, knowledge of its impact on effluent DON is limited. This study investigated the effect of SRT on the bioavailability, fluorescent components, and molecular characteristics of effluent DON in the AS process.

View Article and Find Full Text PDF

The indophenol blue (IPB) method based on Berthelot's reaction is one of the most widely used methods for the determination of ammonium in natural waters. This study comprehensively optimized the kinetics of the IPB reaction under different reagent concentrations, temperature and salinity. The normally used toxic and odorous phenol was replaced by the less toxic, stable flaky crystalline compound, o-phenylphenol.

View Article and Find Full Text PDF

Addition of external carbon sources to postdenitrification biofilters (DNFs) is frequently used in municipal wastewater treatment plants to enhance dissolved inorganic nitrogen removal. However, little is known about its influence on the removal of dissolved organic nitrogen (DON). This study investigated the effect of the carbon-to-nitrogen (C/N) ratio (3, 4, 5, and 6) on the removal characteristics of DON and bioavailable DON (ABDON) in the pilot-scale DNFs treating real secondary effluent.

View Article and Find Full Text PDF