The transmission of tau pathology has been proposed as one of the major mechanisms for the spatiotemporal spreading of tau pathology in neurodegenerative diseases. Over the last decade, studies have demonstrated that targeting total or pathological tau using tau antibodies can mitigate the development of tau pathology in tauopathy or Alzheimer's disease (AD) mouse models, and multiple tau immunotherapy agents have progressed to clinical trials. Tau antibodies are believed to inhibit the internalization of pathologic seeds and/or block seed elongation after seed internalization.
View Article and Find Full Text PDFUnlabelled: Neuronal hyperexcitability is a hallmark of amyotrophic lateral sclerosis (ALS) but its relationship with the TDP-43 aggregates that comprise the predominant pathology in over 90% of ALS cases remains unclear. Emerging evidence in tissue and slice culture models indicate that TDP-43 pathology induces neuronal hyperexcitability suggesting it may be responsible for the excitotoxicity long believed to be a major driver of ALS neuron death. Here, we characterized hyperexcitability and neurodegeneration in the hippocampus of doxycycline-regulatable rNLS8 mice (NEFH-tTA x tetO-hTDP-43ΔNLS), followed by treatment with AAV encoded DREADDs and anti-seizure medications to measure the effect on behavioral function and neurodegeneration.
View Article and Find Full Text PDFInclusions comprised of microtubule-associated protein tau (tau) are implicated in a group of neurodegenerative diseases, collectively known as tauopathies, that include Alzheimer's disease (AD). The spreading of misfolded tau "seeds" along neuronal networks is thought to play a crucial role in the progression of tau pathology. Consequently, restricting the release or uptake of tau seeds may inhibit the spread of tau pathology and potentially halt the advancement of the disease.
View Article and Find Full Text PDFThe microtubule-associated protein tau (tau) forms hyperphosphorylated aggregates in the brains of tauopathy patients that can be pathologically and biochemically defined as distinct tau strains. Recent studies show that these tau strains exhibit strain-specific biological activities, also referred to as pathogenicities, in the tau spreading models. Currently, the specific pathogenicity of human-derived tau strains cannot be fully recapitulated by synthetic tau preformed fibrils (pffs), which are generated from recombinant tau protein.
View Article and Find Full Text PDFDespite the fact that type III collagen is the second most abundant collagen type in the body, its contribution to the physiologic maintenance and repair of skeletal tissues remains poorly understood. This study queried the role of type III collagen in the structure and biomechanical functions of two structurally distinctive tissues in the knee joint, type II collagen-rich articular cartilage and type I collagen-dominated meniscus. Integrating outcomes from atomic force microscopy-based nanomechanical tests, collagen fibril nanostructural analysis, collagen cross-link analysis and histology, we elucidated the impact of type III collagen haplodeficiency on the morphology, nanostructure and biomechanical properties of articular cartilage and meniscus in Col3a1 mice.
View Article and Find Full Text PDFEpithelial barrier function studies often attribute alterations in barrier function to induced changes in tight junctional (TJ) complexes. The occurrence of spontaneous and cytokine-induced, focal cell detachment in cell layers of the human gingival epithelial cell line, Gie-3B11, highlights the danger of this assumption without confirmatory experimentation. Gie-3B11 cell layers manifest morphological polarity, TJ complexes and barrier function after confluence but fail to then maintain a stable epithelial barrier.
View Article and Find Full Text PDF