Cylindrical containers, such as liquid tanks and pressure vessels, are ubiquitous in storage applications. Traditional lines of non-destructive evaluation (NDE) are mostly focused on the integrity of containers, but studies on solid contents within using external sensors are lacking. In previous work, metrics were developed to estimate the structural integrity of mock-up fuel assemblies inside a lab-scale nuclear dry storage cask.
View Article and Find Full Text PDFNanomedicines have the potential to significantly impact cancer therapy by improving drug efficacy and decreasing off-target effects, yet our ability to efficiently home nanoparticles to disease sites remains limited. One frequently overlooked constraint of current active targeting schemes is the relative dearth of targetable antigens within tumors, which restricts the amount of cargo that can be delivered in a tumor-specific manner. To address this limitation, we exploit tumor-specific responses to drugs to construct a cooperative targeting system where a small molecule therapeutic modulates the disease microenvironment to amplify nanoparticle recruitment .
View Article and Find Full Text PDFAntithrombotic therapy is a critical portion of the treatment regime for a number of life-threatening conditions, including cardiovascular disease, stroke, and cancer; yet, proper clinical management of anticoagulation remains a challenge because existing agents increase the propensity for bleeding in patients. Here, we describe the development of a bioresponsive peptide-polysaccharide nanocomplex that utilizes a negative feedback mechanism to self-titrate the release of anticoagulant in response to varying levels of coagulation activity. This nanoscale self-titrating activatable therapeutic, or nanoSTAT, consists of a cationic thrombin-cleavable peptide and heparin, an anionic polysaccharide and widely used clinical anticoagulant.
View Article and Find Full Text PDFWith noncommunicable diseases (NCDs) now constituting the majority of global mortality, there is a growing need for low-cost, noninvasive methods to diagnose and treat this class of diseases, especially in resource-limited settings. Molecular biomarkers combined with low-cost point-of-care assays constitute a potential solution for diagnosing NCDs, but the dearth of naturally occurring, predictive markers limits this approach. Here, we describe the design of exogenous agents that serve as synthetic biomarkers for NCDs by producing urinary signals that can be quantified by a companion paper test.
View Article and Find Full Text PDFThrombin is a serine protease and regulator of hemostasis that plays a critical role in the formation of obstructive blood clots, or thrombosis, that is a life-threatening condition associated with numerous diseases such as atherosclerosis and stroke. To detect thrombi in living animals, we design and conjugate thrombin-sensitive peptide substrates to the surface of nanoparticles. Following intravenous infusion, these "synthetic biomarkers" survey the host vasculature for coagulation and, in response to substrate cleavage by thrombin, release ligand-encoded reporters into the host urine.
View Article and Find Full Text PDFHighly sensitive and completely reversible chemiresistor detectors based on carbon nanotubes (CNTs) were fabricated for multi-component chemical analysis. CNT detectors were used in a series configuration with a gas chromatography column and exposed to a mixture of nine different compounds. It is shown that CNT detectors were able to show parts per billion (pbb) sensitivity responses to each individual component of the mixture and detect nine distinct chemical compounds in roughly 210 s when the detector operates in current stimulated desorption (CSD) mode.
View Article and Find Full Text PDFNanomedicines have enormous potential to improve the precision of cancer therapy, yet our ability to efficiently home these materials to regions of disease in vivo remains very limited. Inspired by the ability of communication to improve targeting in biological systems, such as inflammatory-cell recruitment to sites of disease, we construct systems where synthetic biological and nanotechnological components communicate to amplify disease targeting in vivo. These systems are composed of 'signalling' modules (nanoparticles or engineered proteins) that target tumours and then locally activate the coagulation cascade to broadcast tumour location to clot-targeted 'receiving' nanoparticles in circulation that carry a diagnostic or therapeutic cargo, thereby amplifying their delivery.
View Article and Find Full Text PDFPhosphorescence is among the many functional features that, in practice, divide pure organic compounds from organometallics and inorganics. Considered to be practically non-phosphorescent, purely organic compounds (metal-free) are very rarely explored as emitters in phosphor applications, despite the emerging demand in this field. To defy this paradigm, we describe novel design principles to create purely organic materials demonstrating phosphorescence that can be turned on by incorporating halogen bonding into their crystals.
View Article and Find Full Text PDFThere has been recent controversy whether the response seen in carbon nanotube (CNT) chemiresistors is associated with a change in the resistance of the individual nanotubes or changes in the resistance of the junctions. In this study, we carry out a network analysis to understand the relative contributions of the nanotubes and the junctions to the change in resistance of the nanotube network. We find that the dominant mode of detection in nanotube networks changes according to the conductance level (defect level) in the nanotubes.
View Article and Find Full Text PDFThe desorption of gases from carbon nanotubes is usually a slow process that limits the nanotubes' utility as sensors or as memristors. Here, we demonstrate that flow in the nanotube above the Poole-Frenkel conduction threshold can stimulate adsorbates to desorb without heating the sensor substantially. The method is general: alcohols, aromatics, amines, and phosphonates were all found to desorb.
View Article and Find Full Text PDFA new biodegradable polyphosphoester, poly[[(cholesteryl oxocarbonylamido ethyl) methyl bis(ethylene) ammonium iodide] ethyl phosphate] (PCEP) was synthesized and investigated for gene delivery. Carrying a positive charge in its backbone and a lipophilic cholesterol structure in the side chain, PCEP self-assembled into micelles in aqueous buffer at room temperature with an average size of 60-100 nm. It could bind and protect plasmid DNA from nuclease digestion.
View Article and Find Full Text PDF