Int J Environ Res Public Health
January 2020
Small area estimation is an important tool to provide area-specific estimates of population characteristics for governmental organizations in the context of education, public health and care. However, many demographic and health surveys are unrepresentative at a small geographical level, as often areas at a lower level are not included in the sample due to financial or logistical reasons. In this paper, we investigated (1) the effect of these unsampled areas on a variety of design-based and hierarchical model-based estimates and (2) the benefits of using auxiliary information in the estimation process by means of an extensive simulation study.
View Article and Find Full Text PDFIt is our primary focus to study the spatial distribution of disease incidence at different geographical levels. Often, spatial data are available in the form of aggregation at multiple scale levels such as census tract, county, state, and so on. When data are aggregated from a fine (e.
View Article and Find Full Text PDFSpat Spatiotemporal Epidemiol
August 2017
In spatial epidemiology, data are often arrayed hierarchically. The classification of individuals into smaller units, which in turn are grouped into larger units, can induce contextual effects. On the other hand, a scaling effect can occur due to the aggregation of data from smaller units into larger units.
View Article and Find Full Text PDFInt J Environ Res Public Health
May 2017
Oral cavity and pharynx cancer, even when considered together, is a fairly rare disease. Implementation of multivariate modeling with lung and bronchus cancer, as well as melanoma cancer of the skin, could lead to better inference for oral cavity and pharynx cancer. The multivariate structure of these models is accomplished via the use of shared random effects, as well as other multivariate prior distributions.
View Article and Find Full Text PDFIn disease mapping where predictor effects are to be modeled, it is often the case that sets of predictors are fixed, and the aim is to choose between fixed model sets. Model selection methods, both Bayesian model selection and Bayesian model averaging, are approaches within the Bayesian paradigm for achieving this aim. In the spatial context, model selection could have a spatial component in the sense that some models may be more appropriate for certain areas of a study region than others.
View Article and Find Full Text PDFPurpose: To investigate the distribution of mesothelioma in Flanders using Bayesian disease mapping models that account for both an excess of zeros and overdispersion.
Methods: The numbers of newly diagnosed mesothelioma cases within all Flemish municipalities between 1999 and 2008 were obtained from the Belgian Cancer Registry. To deal with overdispersion, zero inflation, and geographical association, the hurdle combined model was proposed, which has three components: a Bernoulli zero-inflation mixture component to account for excess zeros, a gamma random effect to adjust for overdispersion, and a normal conditional autoregressive random effect to attribute spatial association.
Purpose: Many types of cancer have an underlying spatiotemporal distribution. Spatiotemporal mixture modeling can offer a flexible approach to risk estimation via the inclusion of latent variables.
Methods: In this article, we examine the application and benefits of using four different spatiotemporal mixture modeling methods in the modeling of cancer of the lung and bronchus as well as "other" respiratory cancer incidences in the state of South Carolina.
Spatial data are often aggregated from a finer (smaller) to a coarser (larger) geographical level. The process of data aggregation induces a scaling effect which smoothes the variation in the data. To address the scaling problem, multiscale models that link the convolution models at different scale levels via the shared random effect have been proposed.
View Article and Find Full Text PDFOne of the main goals in spatial epidemiology is to study the geographical pattern of disease risks. For such purpose, the convolution model composed of correlated and uncorrelated components is often used. However, one of the two components could be predominant in some regions.
View Article and Find Full Text PDFPurpose: Many types of cancer have an underlying spatial incidence distribution. Spatial model selection methods can be useful when determining the linear predictor that best describes incidence outcomes.
Methods: In this article, we examine the applications and benefits of using two different types of spatial model selection techniques, Bayesian model selection and Bayesian model averaging, in relation to colon cancer incidence in the state of Georgia, United States.
Low birth weight (LBW) is an important public health issue in the US as well as worldwide. The two main causes of LBW are premature birth and fetal growth restriction. Socio-economic status, as measured by family income has been correlated with LBW incidence at both the individual and population levels.
View Article and Find Full Text PDF