Applications of parahydrogen induced polarization (PHIP) often warrant conversion of the chemically-synthesized singlet-state spin order into net heteronuclear magnetization. In order to obtain optimal yields from the overall hyperpolarization process, catalytic hydrogenation must be tightly synchronized to subsequent radiofrequency (RF) transformations of spin order. Commercial NMR consoles are designed to synchronize applied waves on multiple channels and consequently are well-suited as controllers for these types of hyperpolarization experiments that require tight coordination of RF and non-RF events.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
June 2016
Two synthetic strategies are investigated for the preparation of water-soluble iridium-based catalysts for NMR signal amplification by reversible exchange (SABRE). In one approach, PEGylation of a variant -heterocyclic carbene provided a novel catalyst with excellent water solubility. However, while SABRE-active in ethanol solutions, the catalyst lost activity in >50% water.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
April 2015
Two types of nanoscale catalysts were created to explore NMR signal enhancement via reversible exchange (SABRE) at the interface between heterogeneous and homogeneous conditions. Nanoparticle and polymer comb variants were synthesized by covalently tethering Ir-based organometallic catalysts to support materials comprised of TiO/PMAA (poly methacrylic acid) and PVP (polyvinyl pyridine), respectively, and characterized by AAS, NMR, and DLS. Following parahydrogen (pH) gas delivery to mixtures containing one type of "nano-SABRE" catalyst particles, a target substrate, and ethanol, up to ~(-)40-fold and ~(-)7-fold H NMR signal enhancements were observed for pyridine substrates using the nanoparticle and polymer comb catalysts, respectively, following transfer to high field (9.
View Article and Find Full Text PDFWe report NMR Signal Amplification by Reversible Exchange (SABRE) hyperpolarization of the rare isotopes in "neat" liquids, each composed only of an otherwise pure target compound with isotopic natural abundance (n.a.) and millimolar concentrations of dissolved catalyst.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
April 2015
NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% N-polarization (Theis, T.; et al.
View Article and Find Full Text PDFParahydrogen is demonstrated to efficiently transfer its nuclear spin hyperpolarization to nitrogen-15 in pyridine and nicotinamide (vitamin B(3) amide) by conducting "signal amplification by reversible exchange" (SABRE) at microtesla fields within a magnetic shield. Following transfer of the sample from the magnetic shield chamber to a conventional NMR spectrometer, the (15)N NMR signals for these molecules are enhanced by ∼30,000- and ∼20,000-fold at 9.4 T, corresponding to ∼10% and ∼7% nuclear spin polarization, respectively.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2014
Long-lived spin states of hyperpolarized propane- gas were demonstrated following pairwise addition of parahydrogen gas to propene- using heterogeneous parahydrogen-induced polarization (HET-PHIP). Hyperpolarized molecules were synthesized using Rh/TiO solid catalyst with 1.6 nm Rh nanoparticles.
View Article and Find Full Text PDFActivation of a catalyst [IrCl(COD)(IMes)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; COD = cyclooctadiene)] for signal amplification by reversible exchange (SABRE) was monitored by in situ hyperpolarized proton NMR at 9.4 T. During the catalyst-activation process, the COD moiety undergoes hydrogenation that leads to its complete removal from the Ir complex.
View Article and Find Full Text PDFBy using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 10(5)-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling.
View Article and Find Full Text PDFParahydrogen induced polarization was employed to prepare a relatively long-lived correlated nuclear spin state between methylene and methyl protons in propane gas. Conventionally, such states are converted into a strong NMR signal enhancement by transferring the reaction product to a high magnetic field in an adiabatic longitudinal transport after dissociation engenders net alignment (ALTADENA) experiment. However, the relaxation time T1 of ∼0.
View Article and Find Full Text PDFWe demonstrate the feasibility of microscale molecular imaging using hyperpolarized proton and carbon-13 MRI contrast media and low-field (47.5 mT) preclinical scale (38 mm i.d.
View Article and Find Full Text PDFSeveral supported metal catalysts were synthesized, characterized, and tested in heterogeneous hydrogenation of propene with parahydrogen to maximize nuclear spin hyperpolarization of propane gas using parahydrogen induced polarization (PHIP). The Rh/TiO2 catalyst with a metal particle size of 1.6 nm was found to be the most active and effective in the pairwise hydrogen addition and robust, demonstrating reproducible results with multiple hydrogenation experiments and stability for ≥1.
View Article and Find Full Text PDFThe application of low magnetic fields to heteronuclear NMR has expanded recently alongside the emergence of methods for achieving near unity polarization of spin ensembles, independent of magnetic field strength. The parahydrogen induced hyperpolarization methods in particular, often use a hybrid arrangement where a high field spectrometer is used to detect or image polarized molecules that have been conjured on a separate, dedicated polarizer instrument operating at fields in the mT regime where yields are higher. For controlling polarizer chemistry, spare TTL channels of portable NMR spectrometers can be used to pulse program reaction timings in synchrony with heteronuclear RF transformations.
View Article and Find Full Text PDFParahydrogen-induced polarization (PHIP) was used to demonstrate the concept that highly polarized, catalyst-free fluids can be obtained in a catalysis-free regime using a chemical reaction with molecular addition of parahydrogen to a water-soluble Rh(I) complex carrying a payload of compound with unsaturated (C═C) bonds. Hydrogenation of norbornadiene leads to formation of norbornene, which is eliminated from the Rh(I) complex and, therefore, leaves the aqueous phase and becomes a gaseous hyperpolarized molecule. The Rh(I) metal complex resides in the original liquid phase, while the product of hydrogen addition is found exclusively in the gaseous phase based on the affinity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2014
A novel variant of an iridium-based organometallic catalyst was synthesized and used to enhance the NMR signals of pyridine in a heterogeneous phase by immobilization on polymer microbead solid supports. Upon administration of parahydrogen (pH2) gas to a methanol mixture containing the HET-SABRE catalyst particles and the pyridine, up to fivefold enhancements were observed in the (1)H NMR spectra after sample transfer to high field (9.4 T).
View Article and Find Full Text PDFContrast Media Mol Imaging
July 2015
Indirect proton detection of (13)C hyperpolarized contrast agents potentially enables greater sensitivity. Presented here is a study of sub-second projection imaging of hyperpolarized (13)C contrast agent addressing the obstacle posed by water suppression for indirect detection in vivo. Sodium acetate phantoms were used to develop and test water suppression and sub-second imaging with frequency-selective RF pulses using spectroscopic and imaging indirect proton detection.
View Article and Find Full Text PDFThe synthetic protocol for preparation of 1-(13)C-phosphoenolpyruvate-d2, precursor for parahydrogen-induced polarization (PHIP) of 1-(13)C-phospholactate-d2, is reported. (13)C nuclear spin polarization of 1-(13)C-phospholactate-d2 was increased by >30,000,000-fold (5.75 mT) in water.
View Article and Find Full Text PDF(1)H NMR signal amplification by reversible exchange (SABRE) was observed for pyridine and pyridine-d5 at 9.4 T, a field that is orders of magnitude higher than what is typically utilized to achieve the conventional low-field SABRE effect. In addition to emissive peaks for the hydrogen spins at the ortho positions of the pyridine substrate (both free and bound to the metal center), absorptive signals are observed from hyperpolarized orthohydrogen and Ir-complex dihydride.
View Article and Find Full Text PDFCommonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years).
View Article and Find Full Text PDFReported here is a water soluble Rh(I)-based catalyst for performing parahydrogen induced polarization (PHIP). The [Rh(I)(norbornadiene)(THP)(2)](+)[BF(4)](-) catalyst utilizes the monodentate phosphine ligand tris(hydroxymethyl)phosphine (THP). The monodentate PHIP catalyst is less susceptible to oxygenation by air and THP ligand and is significantly less expensive than bidentate water-soluble PHIP ligands.
View Article and Find Full Text PDFSpin order obtained in the strong coupling regime of protons from parahydrogen-induced hyperpolarization (PHIP) is initially captured as an ensemble of singlet states. For biomedical applications of PHIP, locking this spin order on long-lived heteronuclear storage nuclei increases spectral dispersion, reduces background interference from water protons, and eliminates the need to synchronize subsequent detection pulse sequences to accrued singlet-state evolution. A variety of traditional sequences such as INEPT or HMQC are available to interconvert heteronuclear single quantum coherences at high field, but new approaches are required for converting singlet states into heteronuclear single quantum coherences at low field in the strong coupling regime of protons.
View Article and Find Full Text PDFApplications of PASADENA in biomedicine are continuing to emerge due to recent demonstrations that hyperpolarized metabolic substrates and the corresponding reaction products persist sufficiently long to be detected in vivo. Biomedical applications of PASADENA typically differ from their basic science counterparts in that the polarization endowed by addition of parahydrogen is usually transferred from nascent protons to coupled storage nuclei for subsequent detection on a higher field imaging instrument. These pre-imaging preparations usually take place at low field, but commercial spectrometers capable of heteronuclear pulsed NMR at frequencies in the range of 100 kHz to 1 MHz are scarce though, in comparison to single channel consoles in that field regime.
View Article and Find Full Text PDFIn this work we describe a large volume 340 mL (1)H-X magnetic resonance (MR) probe for studies of hyperpolarized compounds at 0.0475 T. (1)H/(13)C and (1)H/(15)N probe configurations are demonstrated with the potential for extension to (1)H/(129)Xe.
View Article and Find Full Text PDFWe demonstrate that potassium 1-(13)C-phosphoenolpyruvate becomes hyperpolarized potassium 1-(13)C-phospholactate with (13)C T(1) = 36 s after molecular hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment). This proof-of-principle study was conducted with a fully protonated molecular precursor. (13)C was polarized to a level of 1%, corresponding to nearly 4000-fold sensitivity enhancement at 3 T.
View Article and Find Full Text PDFA device is presented for efficiently enriching parahydrogen by pulsed injection of ambient hydrogen gas. Hydrogen input to the generator is pulsed at high pressure to a catalyst chamber making thermal contact with the cold head of a closed-cycle cryocooler maintained between 15 and 20K. The system enables fast production (0.
View Article and Find Full Text PDF