Publications by authors named "Kevin W Holman"

Three distinct techniques exist for distributing an ultrastable frequency reference over optical fibers. For the distribution of a microwave frequency reference, an amplitude-modulated continuous wave (cw) laser can be used. Over kilometer-scale lengths this approach provides an instability at 1 s of approximately 3 x 10(-14) without stabilization of the fiber-induced noise and approximately 1 x 10(-14) with active noise cancellation.

View Article and Find Full Text PDF

We demonstrate a mode-locked, erbium-doped fiber laser with its repetition frequency synchronized to a second fiber laser via an intracavity electro-optic modulator (EOM). With servo control from the EOM (bandwidth approximately 230 kHz) and a slower speed intracavity piezoelectric transducer (resonance at approximately 20 kHz), we demonstrate stabilization of the repetition frequency with an in-loop rms timing jitter of 10 fs, integrated over a bandwidth from 1 Hz to 100 kHz. This represents what is to our knowledge the first time an EOM has been introduced inside a mode-locked laser cavity for fast servo action and the lowest timing jitter reported for a mode-locked fiber laser.

View Article and Find Full Text PDF

Transfer of a high-stability and ultralow-jitter timing signal through a fiber network via a mode-locked fiber laser is demonstrated. With active cancellation of the fiber-transmission noise, the fractional instability for transfer of a radio-frequency signal through a 6.9- (4.

View Article and Find Full Text PDF

By varying the density of an ultracold 88Sr sample from 10(9) to>10(12) cm(-3), we make the first definitive measurement of the density-related frequency shift and linewidth broadening of the 1S0-3P1 optical clock transition in an alkaline earth system. In addition, we report the most accurate measurement to date of the 88Sr 1S0-3P1 optical clock transition frequency. Including a detailed analysis of systematic errors, the frequency is [434 829 121 312 334+/-20(stat)+/-33(syst)] Hz.

View Article and Find Full Text PDF

We report the precise transfer of radio-frequency signals by use of the pulse repetition frequency of mode-locked laser sources at 1.5 microm transmitting through a fiber network. The passive transfer instability through a 6.

View Article and Find Full Text PDF

We have performed detailed studies on the dynamics of a frequency comb produced by a mode-locked laser diode (MLLD). Orthogonal control of the pulse repetition rate and the pulse-to-pulse carrier-envelope phase slippage is achieved by appropriate combinations of the respective error signals to actuate the diode injection current and the saturable absorber bias voltage. Phase coherence is established between the MLLD at 1550 nm and a 775-nm mode-locked Ti:sapphire laser working as part of an optical atomic clock.

View Article and Find Full Text PDF

We have performed systematic studies of intensity-related dynamics of the pulse repetition and carrier-envelope offset frequencies in mode-locked Ti:sapphire lasers. We compared the results far two laser systems that have different intracavity dispersion-compensation schemes. We found that the carrier-envelope phase noise and its dynamic response depend critically on the mode-locking conditions.

View Article and Find Full Text PDF

Using high-bandwidth feedback, we have synchronized the pulse train from a mode-locked semiconductor laser to an external optical atomic clock signal and achieved what is to our knowledge the lowest timing jitter to date (22 fs, integrated from 1 Hz to 100 MHz) for such devices. The performance is limited by the intrinsic noise of the phase detector used for timing-jitter measurement. We expect such a highly stable device to play an important role in fiber-network-based precise time/frequency distribution.

View Article and Find Full Text PDF