Publications by authors named "Kevin Treb"

Background: Multi-energy CT (MECT) enables quantification of material concentrations by measuring linear attenuation coefficient line integrals with multiple x-ray spectra. Photon counting detector (PCD)-CT utilizes a detector-based approach for MECT that can suffer from substantial spectral overlap, resulting in amplified material quantification noise. Dual-source dual-kV approaches for MECT are currently utilized in some energy-integrating detector (EID)-CT systems and can potentially be utilized with PCD-CT for improved spectral separation.

View Article and Find Full Text PDF

Purpose: To evaluate the feasibility of intraoperative neurophysiological monitoring (IONM) during magnetic resonance (MR) imaging-guided ablations and identify strategies to reduce IONM electrode radiofrequency (RF) heating during MR imaging.

Materials And Methods: Ex vivo experiments with a porcine tissue phantom simulating a typical high RF heating risk IONM setup during an MR imaging-guided ablation procedure on the shoulder were performed using a 1.5-T scanner.

View Article and Find Full Text PDF

In photon counting detectors (PCDs), electric pulses induced by two or more x-ray photons can pile up and result in count losses when their temporal separation is less than the detector dead time. The correction of pulse pile-up-induced count loss is particularly difficult for paralyzable PCDs since a given value of recorded counts can correspond to two different values of true photon interactions. In contrast, charge (energy) integrating detectors work by integrating collected electric charge induced by x-rays over time and do not suffer from pile-up losses.

View Article and Find Full Text PDF

Current C-arm x-ray systems equipped with scintillator-based flat panel detectors (FPDs) lack sufficient low-contrast detectability and spectral, high-resolution capabilities much desired for certain interventional procedures. Semiconductor-based direct-conversion photon counting detectors (PCDs) offer these imaging capabilities, although the cost of full field-of-view (FOV) PCD is still too high at the moment. The purpose of this work was to present a hybrid photon counting-energy integrating FPD design as a cost-effective solution to high-quality interventional imaging.

View Article and Find Full Text PDF

Existing dual-layer flat panel detectors (DL-FPDs) use a thin scintillator layer to preferentially detect low-energy x-rays, followed by a permanent Cu filter to absorb residual low-energy x-rays, and finally, a thicker scintillator layer to preferentially detect high-energy x-rays. The image outputs of the two scintillator layers can be jointly processed for dual-energy (DE) planar and cone-beam CT imaging. In clinical practice, a given FPD is often used for not only DE imaging but also routine single-energy (SE) imaging.

View Article and Find Full Text PDF

Existing clinical C-arm interventional systems use scintillator-based energy-integrating flat panel detectors (FPDs) to generate cone-beam CT (CBCT) images. Despite its volumetric coverage, FPD-CBCT does not provide sufficient low-contrast detectability desired for certain interventional procedures. The purpose of this work was to develop a C-arm photon counting detector (PCD) CT system with a step-and-shoot data acquisition method to further improve the tomographic imaging performance of interventional systems.

View Article and Find Full Text PDF

Large-area photon counting detectors (PCDs) are usually built by tiling multiple semiconductor panels that often have slightly different spectral responses to input x-rays. As a result of this spectral inconsistency, experimental PCD-CT images of large, human-sized objects may show high-frequency ring artifacts and low-frequency band artifacts. Due to the much larger width of the bands compared with the rings, the concentric artifact problem in PCD-CT images of human-sized objects cannot be adequately addressed by conventional CT ring correction methods.

View Article and Find Full Text PDF

Modern interventional x-ray systems are often equipped with flat-panel detector-based cone-beam CT (FPD-CBCT) to provide tomographic, volumetric, and high spatial resolution imaging of interventional devices, iodinated vessels, and other objects. The purpose of this work was to bring an interchangeable strip photon-counting detector (PCD) to C-arm systems to supplement (instead of retiring) the existing FPD-CBCT with a high quality, spectral, and affordable PCD-CT imaging option. With minimal modification to the existing C-arm, a 51×0.

View Article and Find Full Text PDF

This work reports an edge enhancing effect experimentally observed in cadmium telluride (CdTe)-based photon counting detector (PCD) systems operated under the charge summing (CS) mode and irradiated by high-flux x-rays. Experimental measurements of the edge spread functions (ESFs) of a PCD system (100m pixel size, 88 ns deadtime) were performed at different input flux levels from 4.5 × 10count per second (cps) mmto 1.

View Article and Find Full Text PDF

Purpose: The concept of the weighted computed tomography dose index ( ) was proposed in 1995 to represent the average CTDI across an axial section of a cylindrical phantom. The purpose of this work was to experimentally re-examine the validity of the underlying assumptions behind for modern MDCT systems.

Methods: To enable experimental mapping of in the axial plane, in-house 16 and 32 cm cylindrical phantoms were fabricated to allow the pencil chamber to reach any arbitrary axial location within the phantoms.

View Article and Find Full Text PDF

Drosophila melanogaster has recently been developed as a simple, in vivo, genetic model of chemotherapy-induced peripheral neuropathy. Flies treated with the chemotherapy agent cisplatin display both a neurodegenerative phenotype and cell death in rapidly dividing follicles, mimicking the cell specific responses seen in humans. Cisplatin induces climbing deficiencies and loss of fertility in a dose dependent manner.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session4ha2h5abn9e9jussdsqat59k1psa90c2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once