Publications by authors named "Kevin Tartour"

Touch sensation is primarily encoded by mechanoreceptors, called low-threshold mechanoreceptors (LTMRs), with their cell bodies in the dorsal root ganglia. Because of their great diversity in terms of molecular signature, terminal endings morphology, and electrophysiological properties, mirroring the complexity of tactile experience, LTMRs are a model of choice to study the molecular cues differentially controlling neuronal diversification. While the transcriptional codes that define different LTMR subtypes have been extensively studied, the molecular players that participate in their late maturation and in particular in the striking diversity of their end-organ morphological specialization are largely unknown.

View Article and Find Full Text PDF

Mammalian circadian oscillators are built on a feedback loop in which the activity of the transcription factor CLOCK-BMAL1 is repressed by the PER-CRY complex. Here, we show that murine Per fibroblasts display aberrant nucleosome occupancy around transcription start sites (TSSs) and at promoter-proximal and distal CTCF sites due to impaired histone H2A.Z deposition.

View Article and Find Full Text PDF

Circadian rhythms orchestrate organismal physiology and behavior in order to anticipate daily changes in the environment. Virtually all cells have an internal rhythm that is synchronized every day by Zeitgebers (environmental cues). The synchrony between clocks within the animal enables the fitness and the health of organisms.

View Article and Find Full Text PDF

Interferon-induced transmembrane proteins (IFITMs) are a family of interferon-inducible proteins that inhibit a broad range of viruses by interfering with viral-to-cellular membrane fusion. The antiviral activity of IFITMs is highly regulated by several posttranslational modifications and by a number of protein domains that modulate steady-state protein levels, trafficking, and antiviral effectiveness. Taking advantage of the natural diversity existing among IFITMs of different animal species, we have compared 21 IFITMs for their ability to inhibit HIV-1 at two steps, during virus entry into cells (target cell protection) and during the production of novel virion particles (negative imprinting of virion particles' infectivity).

View Article and Find Full Text PDF

ISG20 is a broad spectrum antiviral protein thought to directly degrade viral RNA. However, this mechanism of inhibition remains controversial. Using the Vesicular Stomatitis Virus (VSV) as a model RNA virus, we show here that ISG20 interferes with viral replication by decreasing protein synthesis in the absence of RNA degradation.

View Article and Find Full Text PDF

The interferon-induced transmembrane proteins (IFITMs) are a family of highly related antiviral factors that affect numerous viruses at two steps: in target cells by sequestering incoming viruses in endosomes and in producing cells by leading to the production of virions that package IFITMs and exhibit decreased infectivity. While most studies have focused on the former, little is known about the regulation of the negative imprinting of virion particle infectivity by IFITMs and about its relationship with target cell protection. Using a panel of IFITM3 mutants against HIV-1, we have explored these issues as well as others related to the biology of IFITM3, in particular virion packaging, stability, the relation to CD63/multivesicular bodies (MVBs), the modulation of cholesterol levels, and the relationship between negative imprinting of virions and target cell protection.

View Article and Find Full Text PDF

IFITMs are broad antiviral factors that block incoming virions in endosomal vesicles, protecting target cells from infection. In the case of HIV-1, we and others reported the existence of an additional antiviral mechanism through which IFITMs lead to the production of virions of reduced infectivity. However, whether this second mechanism of inhibition is unique to HIV or extends to other viruses is currently unknown.

View Article and Find Full Text PDF

To better characterize the behavior of HIV-1 capsids we developed EURT, for Entry/Uncoating assay based on core-packaged RNA availability and Translation. EURT is an alternative to Blam-Vpr, but as reporter RNA translation relies on core opening, it can be used to study viral capsids behavior. Our study reveals the existence of two major capsid species, a dead end one in which the viral genome is readily exposed to the cytoplasm and a functional one in which such exposure requires artificial core destabilization.

View Article and Find Full Text PDF

During evolution, organisms developed adaptative mechanisms to survive continuous aggressions from a variety of pathogens. Among these lines of defence, many cellular proteins have been described to modulate viral replication and are the subject of intense study. This review will focus on IFITM (interferon induced transmembrane protein), a family of proteins that act against a particularly wide range of viruses.

View Article and Find Full Text PDF

Background: Interferon induced transmembrane proteins 1, 2 and 3 (IFITMs) belong to a family of highly related antiviral factors that have been shown to interfere with a large spectrum of viruses including Filoviruses, Coronaviruses, Influenza virus, Dengue virus and HIV-1. In all these cases, the reported mechanism of antiviral inhibition indicates that the pool of IFITM proteins present in target cells blocks incoming viral particles in endosomal vesicles where they are subsequently degraded.

Results: In this study, we describe an additional mechanism through which IFITMs block HIV-1.

View Article and Find Full Text PDF

HIV-1, an enveloped RNA virus, produces viral particles that are known to be much more heterogeneous in size than is typical of non-enveloped viruses. We present here a novel strategy to study HIV-1 Viral Like Particles (VLP) assembly by measuring the size distribution of these purified VLPs and subsequent viral cores thanks to Atomic Force Microscopy imaging and statistical analysis. This strategy allowed us to identify whether the presence of viral RNA acts as a modulator for VLPs and cores size heterogeneity in a large population of particles.

View Article and Find Full Text PDF

SAMHD1 is a newly identified restriction factor that targets lentiviruses in myeloid cells and is countered by the SIV(SM)/HIV-2 Vpx protein. By analyzing a large panel of Vpx mutants, we identify several residues throughout the 3-helix bundle predicted for Vpx that impair both its functionality and its ability to degrade SAMHD1. We determine that SAMHD1 is a strictly non-shuttling nuclear protein and that as expected WT Vpx localizes with it in the nucleus.

View Article and Find Full Text PDF