Progress in histological methods and in microscope technology has enabled dense staining and imaging of axons over large brain volumes, but tracing axons over such volumes requires new computational tools for 3D reconstruction of data acquired from serial sections. We have developed a computational pipeline for automated tracing and volume assembly of densely stained axons imaged over serial sections, which leverages machine learning-based segmentation to enable stitching and alignment with the axon traces themselves. We validated this segmentation-driven approach to volume assembly and alignment of individual axons over centimeter-scale serial sections and show the application of the output traces for analysis of local orientation and for proofreading over aligned volumes.
View Article and Find Full Text PDFThe gradual loss of cerebral white matter contributes to cognitive decline during aging. However, microvascular networks that support the metabolic demands of white matter remain poorly defined. We used deep multi-photon imaging to characterize microvascular networks that perfuse cortical layer 6 and corpus callosum, a highly studied region of white matter in the mouse brain.
View Article and Find Full Text PDFExpansion microscopy and light sheet imaging enable fine-scale resolution of intracellular features that comprise neural circuits. Most current techniques visualize sparsely distributed features across whole brains or densely distributed features within individual brain regions. Here, we visualize dense distributions of immunolabeled proteins across early visual cortical areas in adult macaque monkeys.
View Article and Find Full Text PDFRecent advances in tissue processing, labeling, and fluorescence microscopy are providing unprecedented views of the structure of cells and tissues at sub-diffraction resolutions and near single molecule sensitivity, driving discoveries in diverse fields of biology, including neuroscience. Biological tissue is organized over scales of nanometers to centimeters. Harnessing molecular imaging across intact, three-dimensional samples on this scale requires new types of microscopes with larger fields of view and working distance, as well as higher throughput.
View Article and Find Full Text PDFMotion/direction-sensitive and location-sensitive neurons are the two major functional types in mouse visual thalamus that project to the primary visual cortex (V1). It is under debate whether motion/direction-sensitive inputs preferentially target the superficial layers in V1, as opposed to the location-sensitive inputs, which preferentially target the middle layers. Here, by using calcium imaging to measure the activity of motion/direction-sensitive and location-sensitive axons in V1, we find evidence against these cell-type-specific laminar biases at the population level.
View Article and Find Full Text PDFTwo-photon fluorescence microscopy has been used extensively to probe the structure and functions of cells in living biological tissue. Two-photon excitation generates fluorescence from the focal plane, but also from outside the focal plane, with out-of-focus fluorescence increasing as the focus is pushed deeper into tissue. It has been postulated that the two-photon depth limit, beyond which results become inaccurate, is where in-focus and out-of-focus fluorescence are equal, which we term the balance depth.
View Article and Find Full Text PDF3-photon excitation enables fluorescence microscopy deep in densely labeled and highly scattering samples. To date, 3-photon excitation has been restricted to scanning a single focus, limiting the speed of volume acquisition. Here, for the first time to our knowledge, we implemented and characterized dual-plane 3-photon microscopy with temporal multiplexing and remote focusing, and performed simultaneous calcium imaging of two planes beyond 600 µm deep in the cortex of a pan-excitatory GCaMP6s transgenic mouse with a per-plane framerate of 7 Hz and an effective 2 MHz laser repetition rate.
View Article and Find Full Text PDFRandom scattering of light by a turbid layer prevents conventional imaging of objects hidden behind it. Angular correlations in the scattered light, created by the so-called optical memory effect, have been shown to enable computational image retrieval of hidden sources. However, basic memory-effect imaging contains no spatial (x) information, as only angular (k-space) measurements are made.
View Article and Find Full Text PDFThe structure of dendritic spines suggests a specialized function in compartmentalizing synaptic signals near active synapses. Indeed, theoretical and experimental analyses indicate that the diffusive resistance of the spine neck is sufficient to effectively compartmentalize some signaling molecules in a spine for the duration of their activated lifetime. Here we describe the application of 2-photon microscopy combined with stimulated emission depletion (STED-2P) to the biophysical study of the relationship between synaptic signals and spine morphology, demonstrating the utility of combining STED-2P with modern optical and electrophysiological techniques.
View Article and Find Full Text PDFWe have synthesized a 7-diethylaminocoumarin (DEAC) derivative that allows wavelength-selective two-photon uncaging at 900 nm versus 720 nm. This new caging chromophore, called DEAC450, has an extended π-electron moiety at the 3-position that shifts the absorption spectrum maximum of DEAC from 375 to 450 nm. Two-photon excitation at 900 nm was more than 60-fold greater than at 720 nm.
View Article and Find Full Text PDFTwo-photon laser scanning microscopy (2PLSM) allows fluorescence imaging in thick biological samples where absorption and scattering typically degrade resolution and signal collection of one-photon imaging approaches. The spatial resolution of conventional 2PLSM is limited by diffraction, and the near-infrared wavelengths used for excitation in 2PLSM preclude the accurate imaging of many small subcellular compartments of neurons. Stimulated emission depletion (STED) microscopy is a superresolution imaging modality that overcomes the resolution limit imposed by diffraction and allows fluorescence imaging of nanoscale features.
View Article and Find Full Text PDFThe autism spectrum disorder tuberous sclerosis complex (TSC) is caused by mutations in the Tsc1 or Tsc2 genes, whose protein products form a heterodimeric complex that negatively regulates mammalian target of rapamycin-dependent protein translation. Although several forms of synaptic plasticity, including metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), depend on protein translation at the time of induction, it is unknown whether these forms of plasticity require signaling through the Tsc1/2 complex. To examine this possibility, we postnatally deleted Tsc1 in vivo in a subset of hippocampal CA1 neurons using viral delivery of Cre recombinase in mice.
View Article and Find Full Text PDFTwo-photon laser scanning microscopy (2PLSM) has allowed unprecedented fluorescence imaging of neuronal structure and function within neural tissue. However, the resolution of this approach is poor compared to that of conventional confocal microscopy. Here, we demonstrate supraresolution 2PLSM within brain slices.
View Article and Find Full Text PDF