Serine 31 is a phospho-site unique to the histone H3.3 variant; mitotic phospho-Ser31 is restricted to pericentromeric heterochromatin, and disruption of phospho-Ser31 results in chromosome segregation defects and loss of p53-dependant G cell-cycle arrest. Ser31 is proximal to the H3.
View Article and Find Full Text PDFAt anaphase, spindle microtubules (MTs) position the cleavage furrow and trigger actomyosin assembly by localizing the small GTPase RhoA and the scaffolding protein anillin to a narrow band along the equatorial cortex [1-6]. Using vertebrate somatic cells we examined the temporal control of furrow assembly. Although its positioning commences at anaphase onset, furrow maturation is not complete until ∼10-11 min later.
View Article and Find Full Text PDFThe pathological accumulation of cholesterol is a signature feature of Niemann-Pick type C (NPC) disease, in which excessive lipid levels induce Purkinje cell death in the cerebellum. NPC1 encodes a lysosomal cholesterol-binding protein, and mutations in NPC1 drive cholesterol accumulation in late endosomes and lysosomes (LE/Ls). However, the fundamental role of NPC proteins in LE/L cholesterol transport remains unclear.
View Article and Find Full Text PDFMaloriented chromosomes can evade the spindle assembly checkpoint and generate aneuploidy, a common feature of tumorigenesis. But chromosome missegregation in non-transformed cells triggers a p53-dependent fail-safe mechanism that blocks proliferation of normal cells that inadvertently become aneuploid. How this fail-safe is triggered is not known.
View Article and Find Full Text PDFNiemann-Pick Type C disease (NPC) is a lethal, autosomal recessive disorder caused by mutations in the NPC1 and NPC2 cholesterol transport proteins. NPC's hallmark symptoms include an accumulation of unesterified cholesterol and other lipids in the late endosomal and lysosomal cellular compartments, causing progressive neurodegeneration and death. Although the age of onset may vary in those affected, NPC most often manifests in juveniles, and is usually fatal before adolescence.
View Article and Find Full Text PDFAurora B (AurB) is a mitotic kinase responsible for multiple aspects of mitotic progression, including assembly of the outer kinetochore. Cytoplasmic dynein is an abundant kinetochore protein whose recruitment to kinetochores requires phosphorylation. To assess whether AurB regulates recruitment of dynein to kinetochores, we inhibited AurB using ZM447439 or a kinase-dead AurB construct.
View Article and Find Full Text PDFKinetochore dynein has been implicated in microtubule capture, correcting inappropriate microtubule attachments, chromosome movement, and checkpoint silencing. It remains unclear how dynein coordinates this diverse set of functions. Phosphorylation is responsible for some dynein heterogeneity (Whyte, J.
View Article and Find Full Text PDFThe role of centrosomes and centrioles during mitotic spindle assembly in vertebrates remains controversial. In cell-free extracts and experimentally derived acentrosomal cells, randomly oriented microtubules (MTs) self-organize around mitotic chromosomes and assemble anastral spindles. However, vertebrate somatic cells normally assemble a connected pair of polarized, astral MT arrays--termed an amphiaster ("a star on both sides")--that is formed by the splitting and separation of the microtubule-organizing center (MTOC) well before nuclear envelope breakdown (NEB).
View Article and Find Full Text PDFWhen CHO cells are arrested in S-phase, they undergo repeated rounds of centrosome duplication without cell-cycle progression. While the increase is slow and asynchronous, the number of centrosomes in these cells does rise with time. To investigate mechanisms controlling this duplication, we have arrested CHO cells in S-phase for up to 72 h, and coordinately inhibited new centriole formation by treatment with the microtubule poison colcemid.
View Article and Find Full Text PDFKinetochores have been proposed to play multiple roles in mitotic chromosome alignment, including initial microtubule (MT) capture, monitoring MT attachments, prometaphase and anaphase chromosome movement and tension generation at metaphase. In addition, kinetochores are essential components of the spindle assembly checkpoint (SAC), and couple chromosome alignment with SAC silencing at metaphase. Although the molecular details of these activities remain under investigation, cytoplasmic dynein has been implicated in several aspects of MT and SAC regulation.
View Article and Find Full Text PDFCell Motil Cytoskeleton
February 2009
Cytoplasmic dynein contributes to the localization and transport of multiple membranous organelles, including late endosomes, lysosomes, and the Golgi complex. It remains unclear which subunits of dynein are directly responsible for linking the dynein complex to these organelles, however the intermediate chain (IC), light intermediate chain (LIC) and light chain (LC) subunits are each thought to be important. Based on previous mapping of a dynein IC phosphorylation site (S84), we measured the impact of transfected ICs on dynein-driven organelle transport (Vaughan et al.
View Article and Find Full Text PDFCytoplasmic dynein functions at several sites during mitosis; however, the basis of targeting to each site remains unclear. Tandem mass spectrometry analysis of mitotic dynein revealed a phosphorylation site in the dynein intermediate chains (ICs) that mediates binding to kinetochores. IC phosphorylation directs binding to zw10 rather than dynactin, and this interaction is needed for kinetochore dynein localization.
View Article and Find Full Text PDFCell Motil Cytoskeleton
August 2008
Taxol functions to suppress the dynamic behavior of individual microtubules, and induces multipolar mitotic spindles. However, little is known about the mechanisms by which taxol disrupts normal bipolar spindle assembly in vivo. Using live imaging of GFP-alpha tubulin expressing cells, we examined spindle assembly after taxol treatment.
View Article and Find Full Text PDFCentrosome duplication must remain coordinated with cell cycle progression to ensure the formation of a strictly bipolar mitotic spindle, but the mechanisms that regulate this coordination are poorly understood. Previous work has shown that prolonged S-phase is permissive for centrosome duplication, but prolonging either G2 or M-phase cannot support duplication. To examine whether G1 is permissive for centrosome duplication, we release serum-starved G0 cells into mimosine, which delays the cell cycle in G1.
View Article and Find Full Text PDFA variety of names has been used in the literature for the subunits of cytoplasmic dynein complexes. Thus, there is a strong need for a more definitive consensus statement on nomenclature. This is especially important for mammalian cytoplasmic dyneins, many subunits of which are encoded by multiple genes.
View Article and Find Full Text PDFJ Cell Biol
October 2005
The EB1 protein is a member of the exciting and enigmatic family of microtubule (MT) tip-tracking proteins. EB1 acts as an exquisite marker of dynamic MT plus ends in some cases, whereas in others EB1 is thought to directly dictate the behavior of the plus ends. How EB1 differentiates between these two roles remains unclear; however, a growing list of interactions between EB1 and other MT binding proteins suggests there may be a single mechanism.
View Article and Find Full Text PDFThe intimate link between microtubule (MT) organization and the components of the secretory pathway has suggested that MT-based motility is an essential component of vesicular membrane transport and membrane polarization. The molecular details of these processes are still under investigation; however, a novel class of MT plus end-binding proteins shed new light on transport between the endoplasmic reticulum (ER) and Golgi apparatus. The dynactin complex, an initial member of this family, shares localization and live-cell imaging phenotypes with other plus end-binding proteins such as CLIP-170 and EB1.
View Article and Find Full Text PDFTrends Cell Biol
September 2004
A diverse group of microtubule-binding proteins has been linked through live-cell imaging of green fluorescent protein (GFP) fusion proteins. These proteins share the ability to associate with the plus ends of elongating microtubules and track with these tips as the microtubules grow, in a process known as "tip tracking". Several models have been proposed to explain the significance of this activity, including roles in delivering proteins to the cell periphery and in modulating microtubule dynamics.
View Article and Find Full Text PDFKinesin II is a heterotrimeric plus end-directed microtubule motor responsible for the anterograde movement of organelles in various cell types. Despite substantial literature concerning the types of organelles that kinesin II transports, the question of how this motor associates with cargo organelles remains unanswered. To address this question, we have used Xenopus laevis melanophores as a model system.
View Article and Find Full Text PDFA subset of microtubule-associated proteins, including cytoplasmic linker protein (CLIP)-170, dynactin, EB1, adenomatous polyposis coli, cytoplasmic dynein, CLASPs, and LIS-1, has been shown recently to target to the plus ends of microtubules. The mechanisms and functions of this binding specificity are not understood, although a role in encouraging microtubule elongation has been proposed. To extend previous work on the role of dynactin in organelle transport, we analyzed p150(Glued) by live-cell imaging.
View Article and Find Full Text PDFCytoplasmic dynein is the major minus-end directed microtubule-based motor in eukaryotic cells. It is composed of a number of different subunits including three light chain families: Tctex1, LC8, and roadblock. The incorporation of the roadblock light chains into the cytoplasmic dynein complex had not been determined.
View Article and Find Full Text PDF