Publications by authors named "Kevin T Breen"

Dysregulation of the complement system is implicated in neurodegeneration, including human and animal glaucoma. Optic nerve and retinal damage in glaucoma is preceded by local complement upregulation and activation, but whether targeting this early innate immune response could have therapeutic benefit remains undefined. Because complement signals through three pathways that intersect at complement C3 activation, here we targeted this step to restore complement balance in the glaucomatous retina and to determine its contribution to degeneration onset and/or progression.

View Article and Find Full Text PDF

Neurodegeneration in glaucoma results in decline and loss of retinal ganglion cells (RGCs), and is associated with activation of myeloid cells such as microglia and macrophages. The chemokine fractalkine (FKN or Cx3cl1) mediates communication from neurons to myeloid cells. Signaling through its receptor Cx3cr1 has been implicated in multiple neurodegenerative diseases, but the effects on neuronal pathology are variable.

View Article and Find Full Text PDF

Within the white matter, axonal loss by neurodegeneration is coupled to glial cell changes in gene expression, structure and function commonly termed gliosis. Recently, we described the highly variable expansion of gliosis alebosco@neuro.utah.

View Article and Find Full Text PDF

Microglia serve key homeostatic roles, and respond to neuronal perturbation and decline with a high spatiotemporal resolution. The course of all chronic CNS pathologies is thus paralleled by local microgliosis and microglia activation, which begin at early stages of the disease. However, the possibility of using live monitoring of microglia during early disease progression to predict the severity of neurodegeneration has not been explored.

View Article and Find Full Text PDF

Glucose is a fundamental metabolite, yet how cells sense and respond to changes in extracellular glucose concentration is not completely understood. We recently reported that the MondoA:Mlx dimeric transcription factor directly regulates glycolysis. In this article, we consider whether MondoA:Mlx complexes have a broader role in sensing and responding to glucose status.

View Article and Find Full Text PDF

Myc and Mondo proteins are key regulators of cell growth, proliferation, and energy metabolism, yet often overlooked is their vital role in cell migration. Complex networks of protein-protein and protein-DNA interactions control the transcriptional activity of Myc and MondoA confounding their functional analysis in higher eukaryotes. Here we report the identification of the transcriptional activation arm of a simplified Myc-like network in Caenorhabditis elegans.

View Article and Find Full Text PDF

Transcription factors can be sequestered at specific organelles and translocate to the nucleus in response to changes in organellar homeostasis. MondoA is a basic helix-loop-helix leucine zipper transcriptional activator similar to Myc in function. However, unlike Myc, MondoA and its binding partner Mlx localize to the cytoplasm, suggesting tight regulation of their nuclear function.

View Article and Find Full Text PDF