Johns Hopkins Medicine underwent a significant evolution with a new Office of Population Health (OPH), inclusive of a hybrid clinical and administrative structure, to optimally align expertise with care delivery functions. Initial priorities included identification of high-risk patients to receive care management, integrated behavioral health, and wraparound supports to address social determinants of health. A cross-functional care team provides multidisciplinary support for primary care practice patient needs, and efforts through the Baltimore Metropolitan Diabetes Regional Partnership have helped accelerate scaling of evidence-based diabetes prevention and management programs across the state.
View Article and Find Full Text PDFA new strain, designated F2B, was isolated from an anaerobic digester for treating solid waste from a marine recirculating aquaculture system. The motile, Gram-negative, non-spore-forming curved rods were 2-7 µm long and 1 µm in diameter. Growth occurred at temperatures ranging from 20 to 40 °C with a maximum rate of growth at 30 °C.
View Article and Find Full Text PDFWhile microbial dechlorination of polychlorinated biphenyls (PCBs) has been observed in sediments over the last 3 decades, translation to the field has been difficult due to a lack of a clear understanding of the kinetic limitations. To address this issue, the present study used passive dosing/sampling to accurately measure the biological rate of dechlorination of 2,3,4,5-tetrachlorobiphenyl (PCB 61) to 2,3,5-trichlorobiphenyl (PCB 23) by an organohalide-respiring bacterium, Dehalobium chlorocoercia (DF-1). The biological rates were measured over an environmentally relevant concentration range of 1-50 ng/L of freely dissolved concentrations with and without the presence of sediment in bench-scale microcosm studies.
View Article and Find Full Text PDFSediment contamination is a major environmental issue in many urban watersheds and coastal areas due to the potential toxic effects of contaminants on biota and human health. Characterizing and delineating areas of sediment contamination and toxicity are important goals of coastal resource management in terms of ecological and economical perspectives. Core and surficial sediment samples were collected from an industrialized urban watershed at the East Coast of the United Stated and analyzed to evaluate the PCB contamination profile and toxicity resulting from dioxin-like PCBs as well as reductive dechlorination potential of indigenous PCB halorespiring bacteria through dechlorination activity assays.
View Article and Find Full Text PDFRemoval of polychlorinated biphenyls (PCBs) from contaminated sediments is a priority due to accumulation in the food chain. Recent success with reduction of PCB bioavailability due to adsorption onto activated carbon led to the recognition of in situ treatment as a remediation approach. In this study, reduced bioavailability and subsequent break-down of PCBs in dehalorespiring biofilms was investigated using Dehalobium chlorocoercia DF1.
View Article and Find Full Text PDFA combined approach involving microbial bioaugmentation and enhanced sorption was demonstrated to be effective for in situ treatment of polychlorinated biphenyls (PCBs). A pilot study was conducted for 409 days on PCB impacted sediments in four 400 m plots located in a watershed drainage pond in Quantico, VA. Treatments with activated carbon (AC) agglomerate bioamended with PCB dechlorinating and oxidizing bacteria decreased the PCB concentration in the top 7.
View Article and Find Full Text PDFThis report describes results of a bench-scale treatability study to evaluate the efficacy of bioaugmentation with bioamended activated carbon (AC) for in situ treatment of polychlorinated biphenyl (PCB) impacted sediments. To this end, the ability of PCB transforming microorganisms to degrade and reduce the overall concentration of PCBs in sediment was determined in 2 L recirculating mesocosms designed to simulate conditions in Abraham's Creek in Quantico, Virginia. Ten sediment mesocosms were tested for the effects of AC alone, AC with slow release electron donor (cellulose) and different concentrations and combinations of PCB dehalogenating and degrading microorganisms added as bioamendments.
View Article and Find Full Text PDFAroclor 1254 (A1254) is the most toxic commercial PCB mixture produced, primarily due to its relatively high concentrations of dioxin-like congeners. This study demonstrates a comparative evaluation of dechlorination of A1254 and PCB-118 by indigenous organohalide respiring bacteria enriched from three PCB impacted sites: Grasse River (GR), NY; Fox River (FR), WI; and Baltimore Harbor (BH), MD. PCB-118 dechlorination rates in GR, BH, and FR was 0.
View Article and Find Full Text PDFAroclor 1254 was the second most produced commercial PCB mixture and is found in soils, sediments and sewage throughout the globe. This commercial PCB mixture is considered particularly toxic because of the relatively high concentrations of congeners with dioxin-like properties. The potential for risk reduction by microbial reductive dechlorination of Aroclor 1254 (A1254) was investigated in sediment microcosms from Grasse River (GR), Massena, NY.
View Article and Find Full Text PDFSemin Oncol Nurs
May 2016
Objectives: To explore the key drivers of the transformation of healthcare in the United States and the models and roles that oncology nurses will need to develop to further this transformation.
Data Sources: Peer-reviewed journals, books, professional organization reports, government and national organization reports.
Conclusion: The American healthcare system is in the midst of a significant transformation that is driven by an evaluation of the quality and cost equations within the current economic models that support the delivery of healthcare.
A detailed quantitative analysis of anaerobic dechlorination (AD) pathways of polychlorinated biphenyls (PCBs) in sediment microcosms was performed by applying an anaerobic dechlorination model (ADM). The purpose of ADM is to systematically analyze changes in a contaminant profile that result from microbial reductive dechlorination according to empirically determined dechlorination pathways. In contrast to prior studies that utilized modeling tools to predict dechlorination pathways, ADM also provides quantification of individual pathways.
View Article and Find Full Text PDFThe time required for a PCB-contaminated site to recover cannot yet be predicted due in part to lack of quantitative information on rates of PCB dechlorination in the porewater phase. We developed a method to measure rate of dechlorination in the aqueous phase at very low PCB concentrations. This approach utilizes a polymer functioning concurrently as a passive dosing system for maintaining a steady-state PCB substrate concentration in the water phase and as a passive equilibrium sampler to monitor the dechlorination product.
View Article and Find Full Text PDFThe role of the multisubunit sodium/proton antiporter (Mrp) of Methanosarcina acetivorans was investigated with a mutant deleted for the gene encoding the MrpA subunit. Antiporter activity was 5-fold greater in acetate-grown versus methanol-grown wild-type cells, consistent with the previously published relative levels of mrp transcript. The rate, final optical density, and dry weight/methane ratio decreased for the mutant versus wild type when cultured with a growth-limiting concentration of acetate.
View Article and Find Full Text PDFClin Orthop Relat Res
June 2013
Background: Recently, quality, financial, and regulatory demands have driven physicians to seek alignment opportunities with hospitals. The motivation for alignment on the part of physicians and hospitals is now accelerating because the new paradigm under healthcare reform requires an increased focus on improving quality, cost, and efficiency.
Questions/purposes: We (1) identify the key drivers for physician-hospital alignment models; (2) summarize comanagement as a physician-hospital alignment model; and (3) explore a detailed case study of comanagement as an option to better align physicians with hospital goals on quality, safety, and outcomes.
Bioremediation of sediments contaminated with commercial polychlorinated biphenyls (PCBs) is potentially achievable by the sequential activity of anaerobic halorespiration to convert higher chlorinated congeners to less chlorinated congeners that are susceptible to aerobic respiratory degradation. The efficacy of bioaugmentation with anaerobic halorespiring Dehalobium chlorocoercia DF1 and aerobic Burkholderia xenovorans LB400 added concurrently with granulated activated carbon (GAC) as a delivery system was determined in 2 L laboratory mesocosms containing weathered Aroclor-contaminated sediment from Baltimore Harbor, MD, USA. The greatest effect was seen in the mesocosm bioaugmented with both DF1 and LB400 together, which resulted in an 80% decrease by mass of PCBs, from 8 to <2 mg/kg after 120 days.
View Article and Find Full Text PDFBioremediation of polychlorinated biphenyls (PCBs) has been precluded in part by the lack of a cost-effective method to stimulate microbial degradation in situ. A common limitation is the lack of an effective method of providing electron donors and acceptors to promote in situ PCB biodegradation. Application of an electric potential to soil/sediment could be an effective means of providing electron-donors/-acceptors to PCB dechlorinating and degrading microorganisms.
View Article and Find Full Text PDFCurr Opin Biotechnol
June 2013
The remediation of polychlorinated biphenyls (PCBs) in soils and sediments remains a particularly difficult problem to solve. The possibility of in situ degradation by microorganisms has been pursued for many years since this approach has the potential to provide a cost-effective and environmentally sustainable alternative to dredging for treatment of PCB impacted sites. Being hydrophobic, PCBs partition into organic material and accumulate in anoxic environments well poised to support anaerobic dechlorination of highly chlorinated congeners; products of which are susceptible to complete aerobic degradation.
View Article and Find Full Text PDFHydrogenotrophic methanogens possessing the hydrogen-dependent dehydrogenase Hmd also encode paralogs of this protein whose function is poorly understood. Here we present biochemical evidence that the two inactive Hmd paralogs of Methanocaldococcus jannaschii, HmdII and HmdIII, form binary and ternary complexes with several components of the protein translation apparatus. HmdII and HmdIII, but not the active dehydrogenase Hmd, bind with micromolar binding affinities to a number of tRNAs and form ternary complexes with tRNA(Pro) and prolyl-tRNA synthetase (ProRS).
View Article and Find Full Text PDFAppl Environ Microbiol
March 2012
Viable methanogens have been detected in dry, aerobic environments such as dry reservoir sediment, dry rice paddies and aerobic desert soils, which suggests that methanogens have mechanisms for long-term survival in a desiccated state. In this study, we quantified the survival rates of the methanogenic archaeon Methanosarcina barkeri after desiccation under conditions equivalent to the driest environments on Earth and subsequent exposure to different stress factors. There was no significant loss of viability after desiccation for 28 days for cells grown with either hydrogen or the methylotrophic substrates, but recovery was affected by growth phase, with cells desiccated during the stationary phase of growth having a higher rate of recovery after desiccation.
View Article and Find Full Text PDFAnaerobic reductive dehalogenation of commercial PCBs such as Aroclor 1260 has a critical role of transforming highly chlorinated congeners to less chlorinated congeners that are then susceptible to aerobic degradation. The efficacy of bioaugmentation with the dehalorespiring bacterium Dehalobium chlorocoercia DF1 was tested in 2-L laboratory mesocosms containing sediment contaminated with weathered Aroclor 1260 (1.3 ppm) from Baltimore Harbor, MD.
View Article and Find Full Text PDFBackground: Correct annotation of function is essential if one is to take full advantage of the vast amounts of genomic sequence data. The accuracy of sequence-based functional annotations is often variable, particularly if the sequence homology to a known function is low. Indeed recent work has shown that even proteins with very high sequence identity can have different folds and functions, and therefore caution is needed in assigning functions by sequence homology in the absence of experimental validation.
View Article and Find Full Text PDFThe modified nucleosides N(2)-methylguanosine and N(2)(2)-dimethylguanosine in transfer RNA occur at five positions in the D and anticodon arms, and at positions G6 and G7 in the acceptor stem. Trm1 and Trm11 enzymes are known to be responsible for several of the D/anticodon arm modifications, but methylases catalyzing post-transcriptional m(2)G synthesis in the acceptor stem are uncharacterized. Here, we report that the MJ0438 gene from Methanocaldococcus jannaschii encodes a novel S-adenosylmethionine-dependent methyltransferase, now identified as Trm14, which generates m(2)G at position 6 in tRNA(Cys).
View Article and Find Full Text PDFBioaugmentation is an attractive mechanism for reducing recalcitrant pollutants in sediments, especially if this technology could be applied in situ. To examine the potential effectiveness of a bioaugmentation strategy for PCB contamination, PCB dehalorespiring populations were inoculated into Baltimore Harbor sediment microcosms. A culture containing the two most predominant indigenous PCB dehalorespiring microorganisms and a culture containing a strain with a rare ortho dechlorination activity and a non-indigenous strain that attacks double-flanked chlorines, were inoculated into sediment microcosms amended with 2,2',3,5,5',6-hexachlorobiphenyl (PCB 151) and Aroclor 1260.
View Article and Find Full Text PDFObjective: We report the process used to rapidly develop a collaborative adult respiratory extracorporeal membrane oxygenation program as a response to caring for young adult patients with refractory hypoxemia in the setting of the pH1N1 pandemic.
Design: Interdisciplinary response of a complex medical system to a public health crisis. PATIENTS, INTERVENTIONS, MEASUREMENTS, AND MAIN RESULTS: After the successful use of extracorporeal membrane oxygenation in young adults with pH1N1-induced acute respiratory distress syndrome refractory to conventional therapies, an adult venovenous extracorporeal membrane oxygenation program was implemented over an 8-wk period.