Described is the development of a polymeric micelle drug delivery platform that addresses the physical property limitations of many nanovectors. The system employs triblock copolymers comprised of a hydrophilic poly(ethylene glycol) (PEG) block, and two poly(amino acid) (PAA) blocks: a stabilizing cross-linking central block, and a hydrophobic drug encapsulation block. Detailed description of synthetic strategies and considerations found to be critical are discussed.
View Article and Find Full Text PDFNanoparticle drug carriers hold potential to improve current cancer therapy by delivering payload to the tumor environment and decreasing toxic side effects. Challenges in nanotechnology drug delivery include plasma instability, site-specific delivery, and relevant biomarkers. We have developed a triblock polymer comprising a hydroxamic acid functionalized center block that chelates iron to form a stabilized micelle that physically entraps chemotherapeutic drugs in the hydrophobic core.
View Article and Find Full Text PDFEpothilones have demonstrated promising potential for oncology applications but suffer from a narrow therapeutic window. Epothilone D stabilizes microtubules leading to apoptosis, is active against multidrug-resistant cells, and is efficacious in animal tumor models despite lack of stability in rodent plasma. Clinical development was terminated in phase II due to dose limiting toxicities near the efficacious dose.
View Article and Find Full Text PDFJ Polym Sci A Polym Chem
September 2016
Azido-functionalized poly(ethylene glycol) (PEG) derivatives are finding ever-increasing applications in the areas of conjugation chemistry and targeted drug delivery by their judicious incorporation into nanoparticle-forming polymeric systems. Quantification of azide incorporation into such PEG polymers is essential to their effective use. H Nuclear Magnetic Resonance (NMR) analysis offers the simplest approach; however, the relevant adjacent azide-bearing methylene protons are often obscured by the PEG manifold signals.
View Article and Find Full Text PDFVaccination is regarded as one of the most cost-effective and reliable methods for combating disease. We have developed a new method for an oligomeric Aβ-specific AD vaccination using polymer micelle-encapsulated peptide fragments, which overcome many problems of vaccination associated with the direct use of the Aβ1–42 peptide. We studied different encapsulated forms of shortened Aβ peptides with and without the entire T cell epitope in an APP/PS1 mouse model.
View Article and Find Full Text PDFRecent emphasis has focused on the development of rationally designed polymer-based micelle carriers for drug delivery. The current work tests the hypothesis that target specificity can be enhanced by micelles with cancer-specific ligands. In particular, we describe the synthesis and characterization of a new gadolinium texaphyrin (Gd-Tx) complex encapsulated in an IVECT micellar system, stabilized through Fe(III) cross-linking and targeted with multiple copies of a specific ligand for the melanocortin 1 receptor (MC1R), which has been evaluated as a cell-surface marker for melanoma.
View Article and Find Full Text PDFChemotherapeutic drugs are widely used for the treatment of cancer; however, use of these drugs is often associated with patient toxicity and poor tumor delivery. Micellar drug carriers offer a promising approach for formulating and achieving improved delivery of hydrophobic chemotherapeutic drugs; however, conventional micelles do not have long-term stability in complex biological environments such as plasma. To address this problem, a novel triblock copolymer has been developed to encapsulate several different hydrophobic drugs into stable polymer micelles.
View Article and Find Full Text PDFPolymer micelles are promising drug delivery vehicles for the delivery of anticancer agents to tumors. Often, anticancer drugs display potent cytotoxic effects towards cancer cells but are too hydrophobic to be administered in the clinic as a free drug. To address this problem, a polymer micelle was designed using a triblock copolymer (ITP-101) that enables hydrophobic drugs to be encapsulated.
View Article and Find Full Text PDFThe incidence of malignant melanoma is rising faster than that of any other cancer in the United States. Because of its high expression on the surface of melanomas, MC1R has been investigated as a target for selective imaging and therapeutic agents against melanoma. Eight ligands were screened against cell lines engineered to overexpress MC1R, MC4R, or MC5R.
View Article and Find Full Text PDFSize-correlated single-molecule fluorescence measurements on CdSe quantum dots functionalized with oligo(phenylene vinylene) (OPV) ligands exhibit modified fluorescence intermittency (blinking) statistics that are highly sensitive to the degree of ligand coverage on the quantum dot surface. As evidenced by a distinct surface height signature, fully covered CdSe-OPV nanostructures (approximately 25 ligands) show complete suppression of blinking in the solid state on an integration time scale of 1 s. Some access to dark states is observed on finer time scales (100 ms) with average persistence times significantly shorter than those from ZnS-capped CdSe quantum dots.
View Article and Find Full Text PDFThe temporal and spectral properties of luminescence from individual CdSe quantum dot-oligophenylene vinylene nanostructures (single quantum dots with conjugated organic ligands coordinated to the surface) are profoundly modified relative to blended films of the same components. These kinds of composite quantum dot-conjugated organic systems have attracted significant interest as a way to improve efficiency in photovoltaic device applications. By direct functionalization of the dot surface with the conjugated organic ligands, we realize a significant enhancement in energy transfer and luminescence stability.
View Article and Find Full Text PDFThe organization of inorganic nanostructures within self-assembled organic or biological templates is receiving the attention of scientists interested in developing functional hybrid materials. Previous efforts have concentrated on using such scaffolds to spatially arrange nanoscopic elements as a strategy for tailoring the electrical, magnetic or photonic properties of the material. Recent theoretical arguments have suggested that synergistic interactions between self-organizing particles and a self-assembling matrix material can lead to hierarchically ordered structures.
View Article and Find Full Text PDFIn polymernanoparticle composites, uniform dispersion of the nanoparticles carries advantages over cases where nanoparticle aggregation dominates. Such dispersion has been particularly difficult to obtain in the case of composites prepared from nanoparticles and conjugated polymers. Here, we show that cadmium selenide nanocrystals, or quantum dots, can be integrated into thin films of poly(para-phenylene vinylene) (PPV) without aggregation.
View Article and Find Full Text PDF