Background Adaptive arterial remodeling caused by flow reduction from downstream stenosis has been demonstrated in animal studies. The authors sought to determine whether inward remodeling from downstream stenosis also occurs in humans and is detectable by ex vacuo expansion of the Rektorzik venous plexus (RVP) surrounding the petrous internal carotid artery. Methods and Results The authors analyzed 214 intracranial magnetic resonance imaging examinations that included contrast-enhanced vessel wall imaging.
View Article and Find Full Text PDFCerebrovascular reactivity (CVR) is defined as the change in cerebral blood flow induced by a change in a vasoactive stimulus. CVR using BOLD MRI in combination with changes in end-tidal CO is a very useful method for assessing vascular performance. In recent years, this technique has benefited from an advanced gas delivery method where end-tidal CO can be targeted, measured very precisely, and validated against arterial blood gas sampling (Ito et al.
View Article and Find Full Text PDFThe normal variability in breath size and frequency results in breath-to-breath variability of end-tidal PCO (PCO), the measured variable, and arterial partial pressure of carbon dioxide (PaCO), the independent variable affecting cerebral blood flow (CBF). This study examines the effect of variability in PaCO on the pattern of resting-state functional MRI (rs-fMRI) connectivity. A region of interest (ROI)-to-ROI and Seed-to-Voxel first-level bivariate correlation, hemodynamic response function (hrf)-weighted analysis for measuring rs-fMRI connectivity was performed during two resting-state conditions: (a) normal breathing associated with breath-to-breath variation in PaCO (poikilocapnia), and (b) normal breathing with breath-to-breath variability of PCO dampened using sequential rebreathing (isocapnia).
View Article and Find Full Text PDFCerebrovascular reactivity (CVR) is defined as the ratio of the cerebral blood flow (CBF) response to an increase in a vasoactive stimulus. We used changes in blood oxygenation level-dependent (BOLD) MRI as surrogates for changes of CBF, and standardized quantitative changes in arterial partial pressure of carbon dioxide as the stimulus. Despite uniform stimulus and test conditions, differences in voxel-wise BOLD changes between testing sites may remain, attributable to physiologic and machine variability.
View Article and Find Full Text PDFEthanol poisoning is endemic the world over. Morbidity and mortality depend on blood ethanol levels which in turn depend on the balance between its rates of absorption and clearance. Clearance of ethanol is mostly at a constant rate via enzymatic metabolism.
View Article and Find Full Text PDFIn patients with carotid artery stenosis (CAS), the risk of stroke, its severity, and response to revascularization are strongly related to the availability of collateral blood flow. Unfortunately, there is poor agreement between observers in assessing collateral flow using flow-based imaging. We used changes in blood-oxygen-level-dependent (BOLD) MRI as a surrogate of changes in regional cerebral blood flow in response to a hypercapnic stimulus [i.
View Article and Find Full Text PDFBackground and Purpose- Cerebral small vessel disease (SVD) is associated with increased stroke risk and poor stroke outcomes. We aimed to evaluate whether chronic SVD burden is associated with poor recruitment of collaterals in large-vessel occlusive stroke. Methods- Consecutive patients with middle cerebral artery or internal carotid artery occlusion presenting within 6 hours after stroke symptom onset who underwent thrombectomy from 2012 to 2017 were included.
View Article and Find Full Text PDFBackground: Recent investigations now suggest that cerebrovascular reactivity (CVR) is impaired in Alzheimer's disease (AD) and may underpin part of the disease's neurovascular component. However, our understanding of the relationship between the magnitude of CVR, the speed of cerebrovascular response, and the progression of AD is still limited. This is especially true in patients with mild cognitive impairment (MCI), which is recognized as an intermediate stage between normal aging and dementia.
View Article and Find Full Text PDFThe purpose of this study was to determine the relationship between the organization of the brain connectome and cerebrovascular reactivity (CVR) in persons with white matter hyperintensities. Diffusion tensor and CVR mapping 3T MRI scans were acquired in 31 participants with white matter hyperintensities. In each participant, the connectome was assessed by reconstructing all white matter tracts with tractography and segmenting the whole brain into multiple regions.
View Article and Find Full Text PDFMeasures of cerebrovascular reactivity (CVR) are used to judge the health of the brain vasculature. In this study, we report the use of several different analyses of blood oxygen dependent (BOLD) fMRI responses to CO to provide a number of metrics of CVR based on the sigmoidal resistance response to CO. To assess possible differences in these metrics with age, we compiled atlases reflecting voxel-wise means and standard deviations for four different age ranges and for a group of patients with mild cognitive impairment (MCI) and compared them.
View Article and Find Full Text PDFPurpose: It is unclear how white matter hyperintensities disrupt surrounding white matter tracts. The aim of this tractography study was to determine the spatial relationship between diffusion characteristics along white matter tracts and the distance from white matter hyperintensities.
Methods: Diffusion tensor 3-T MRI scans were acquired in 29 participants with white matter hyperintensities.
Cerebrovascular reactivity (CVR) is a measure of vascular response to a vasoactive stimulus, and can be used to assess the health of the brain vasculature. In this current study we used different analyses of BOLD fMRI responses to CO to provide a number of metrics including ramp and step CVR, speed of response and transfer function analysis (TFA). 51 healthy control volunteers between the ages of 18-85 (26 males) were recruited and scanned at 3T field strength.
View Article and Find Full Text PDFThe cerebral vascular network regulates blood flow distribution by adjusting vessel diameters, and consequently resistance to flow, in response to metabolic demands (neurovascular coupling) and changes in perfusion pressure (autoregulation). Deliberate changes in carbon dioxide (CO) partial pressure may be used to challenge this regulation and assess its performance since CO also acts to change vessel diameter. Cerebrovascular reactivity (CVR), the ratio of cerebral blood flow (CBF) response to CO stimulus is currently used as a performance metric.
View Article and Find Full Text PDFThe purpose of this retrospective observational study is to investigate the long-term changes in cerebrovascular reactivity (CVR) as a measure of cerebral hemodynamics in patients with intracranial steno-occlusive disease (IC-SOD) after they have undergone an Extracranial-intracranial (EC-IC) bypass. Twenty-six patients suffering from IC-SOD were selected from our CVR database. Nineteen patients underwent unilateral and 7 underwent bilateral revascularization.
View Article and Find Full Text PDFBackground: Impaired cerebrovascular reactivity (CVR) is an important prognostic marker of stroke. Most measures of CVR lack (1) a reproducible vasoactive stimulus and (2) a high time and spatial resolution measure of cerebral blood flow (CBF), particularly for mechanically ventilated patients. The aim of our study was to investigate the feasibility of measuring CVR using sequential gas delivery circuit and gas blender for precise targeting of end-tidal PCO (PetCO), and blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) signal as a surrogate of CBF, in mechanically ventilated patients.
View Article and Find Full Text PDFThe ability of the cerebral vasculature to regulate vascular diameter, hence resistance and cerebral blood flow (CBF), in response to metabolic demands (neurovascular coupling), and perfusion pressure changes (autoregulation) may be assessed by measuring the CBF response to carbon dioxide (CO ). In healthy individuals, the CBF response to a ramp CO stimulus from hypocapnia to hypercapnia is assumed sigmoidal or linear. However, other response patterns commonly occur, especially in individuals with cerebrovascular disease, and these remain unexplained.
View Article and Find Full Text PDFCerebral blood flow responds to a carbon dioxide challenge, and is often assessed as cerebrovascular reactivity, assuming a linear response over a limited stimulus range or a sigmoidal response over a wider range. However, these assumed response patterns may not necessarily apply to regions with pathophysiology. Deviations from sigmoidal responses are hypothesised to result from upstream flow limitations causing competition for blood flow between downstream regions, particularly with vasodilatory stimulation; flow is preferentially distributed to regions with more reactive vessels.
View Article and Find Full Text PDFPurpose: Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is a technique used to infer neuronal activity from the observed changes in blood flow. Cerebrovascular reactivity (CVR) is the ability of arterioles to increase blood flow in response to vasodilatory stimulus. We hypothesize that in areas of disease where there is exhausted vascular reserve and impaired CVR there will be diminished blood flow response following neuronal activation, and that these areas would appear as false-negative tests on BOLD fMRI.
View Article and Find Full Text PDFObjective: To compare the diffusion and perfusion MRI metrics of normal-appearing white matter (NAWM) with and without impaired cerebrovascular reactivity (CVR).
Methods: Seventy-five participants with moderate to severe leukoaraiosis underwent blood oxygen level-dependent CVR mapping using a 3T MRI system with precise carbon dioxide stimulus manipulation. Several MRI metrics were statistically compared between areas of NAWM with positive and negative CVR using one-way analysis of variance with Bonferroni correction for multiple comparisons.
Purpose: To evaluate the relationship between both dynamic and steady-state measures of cerebrovascular reactivity (CVR) and the progression of age-related white matter disease.
Methods: Blood oxygen level-dependent (BOLD) MRI CVR scans were acquired from forty-five subjects (age range: 50-90 years, 25 males) with moderate to severe white matter disease, at baseline and one-year follow-up. To calculate the dynamic (τ) and steady-state (ssCVR) components of the BOLD signal response, the PETCO2 signal waveform was convolved with an exponential decay function.
Objective: White matter hyperintensities (WMH) observed on neuroimaging of elderly individuals are associated with cognitive decline and disability. However, the pathogenesis of WMH remains poorly understood. We observed that regions of reduced cerebrovascular reactivity (CVR) in the white matter of young individuals correspond to the regions most susceptible to WMH in the elderly.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
November 2015
We define cerebral vascular reactivity (CVR) as the ratio of the change in blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) signal (S) to an increase in blood partial pressure of CO2 (PCO2): % Δ S/Δ PCO2 mm Hg. Our aim was to further characterize CVR into dynamic and static components and then study 46 healthy subjects collated into a reference atlas and 20 patients with unilateral carotid artery stenosis. We applied an abrupt boxcar change in PCO2 and monitored S.
View Article and Find Full Text PDFObjectives: Unilateral haemodynamically significant large-vessel intracranial stenosis may be associated with reduced blood-oxygen-level-dependent (BOLD) cerebrovascular reactivity (CVR), an indicator of autoregulatory reserve. Reduced CVR has been associated with ipsilateral cortical thinning and loss in cognitive function. These effects have been shown to be reversible following revascularisation.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
February 2015
Attribution of vascular pathophysiology to reductions in cerebrovascular reactivity (CVR) is confounded by subjective assessment and the normal variation between anatomic regions. This study aimed to develop an objective scoring assessment of abnormality. CVR was measured as the ratio of the blood-oxygen-level-dependent magnetic resonance signal response divided by an increase in CO2, standardized to eliminate variability.
View Article and Find Full Text PDF