J Ind Microbiol Biotechnol
January 2017
To increase the knowledge of the recombinant cyprosin production process in Saccharomyces cerevisiae cultures, it is relevant to implement efficient bioprocess monitoring techniques. The present work focuses on the implementation of a mid-infrared (MIR) spectroscopy-based tool for monitoring the recombinant culture in a rapid, economic, and high-throughput (using a microplate system) mode. Multivariate data analysis on the MIR spectra of culture samples was conducted.
View Article and Find Full Text PDFEscherichia coli is one of the most used host microorganism for the production of recombinant products, such as heterologous proteins and plasmids. However, genetic, physiological and environmental factors influence the plasmid replication and cloned gene expression in a highly complex way. To control and optimize the recombinant expression system performance, it is very important to understand this complexity.
View Article and Find Full Text PDFHuman mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell-based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex-vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi-analytical methods, some of them time-consuming.
View Article and Find Full Text PDFReporter genes are routinely used in every laboratory for molecular and cellular biology for studying heterologous gene expression and general cellular biological mechanisms, such as transfection processes. Although well characterized and broadly implemented, reporter genes present serious limitations, either by involving time-consuming procedures or by presenting possible side effects on the expression of the heterologous gene or even in the general cellular metabolism. Fourier transform mid-infrared (FT-MIR) spectroscopy was evaluated to simultaneously analyze in a rapid (minutes) and high-throughput mode (using 96-wells microplates), the transfection efficiency, and the effect of the transfection process on the host cell biochemical composition and metabolism.
View Article and Find Full Text PDFThe development of biopharmaceutical manufacturing processes presents critical constraints, with the major constraint being that living cells synthesize these molecules, presenting inherent behavior variability due to their high sensitivity to small fluctuations in the cultivation environment. To speed up the development process and to control this critical manufacturing step, it is relevant to develop high-throughput and in situ monitoring techniques, respectively. Here, high-throughput mid-infrared (MIR) spectral analysis of dehydrated cell pellets and in situ near-infrared (NIR) spectral analysis of the whole culture broth were compared to monitor plasmid production in recombinant Escherichia coli cultures.
View Article and Find Full Text PDFNear infrared (NIR) spectroscopy was used to in situ monitoring the cultivation of two recombinant Saccharomyces cerevisiae strains producing heterologous cyprosin B. NIR spectroscopy is a fast and non-destructive technique, that by being based on overtones and combinations of molecular vibrations requires chemometrics tools, such as partial least squares (PLS) regression models, to extract quantitative information concerning the variables of interest from the spectral data. In the present work, good PLS calibration models based on specific regions of the NIR spectral data were built for estimating the critical variables of the cyprosin production process: biomass concentration, cyprosin activity, cyprosin specific activity, the carbon sources glucose and galactose concentration and the by-products acetic acid and ethanol concentration.
View Article and Find Full Text PDFBackground: Arachidonic acid metabolite, generated by cyclooxygenase (COX), is implicated in the colorectal cancer (CRC) pathogenesis. Inhibiting COX may therefore have anti-carcinogenic effects. Results from use of non-steroidal anti-inflammatory drugs inhibiting only COX have been conflicting.
View Article and Find Full Text PDFTissue engineering has been conducted in the study of cardiovascular grafts for many years. Many obstacles have been overcome in this rapidly changing field, but one difficulty has remained until now: the large number of endothelial cells (ECs) needed for seeding the inner layer of bypass graft. Recent advances in endothelial progenitor cell (EPC) isolation and culture techniques have increased the interest in genetic studies.
View Article and Find Full Text PDFHuman peripheral blood (HPB) contains both circulating endothelial cells (CECs) and endothelial progenitor stem cells (EPCs), which may be suitable for use in regenerative medicine. There has been considerable interest in using these cells, but there is no "gold standard" technique for isolating these cells. The aim of this study was to characterize and compare a number of different extraction and culture techniques to develop a system to isolate and culture cells.
View Article and Find Full Text PDFColorectal cancer is the third most common cause of cancer-related deaths in the Western world. 5-Fluorouracil (5-FU) based chemotherapeutic regimes have been the mainstay of systemic treatment for disseminated colorectal cancer for many years. However, it only produces a 25% response rate due to the drug-resistance.
View Article and Find Full Text PDFAnticancer Agents Med Chem
September 2010
Tetracyclines have been long known for their antimicrobial role. They are one of the most widely used antibiotics in clinical practice since last 5 decades. Recently their role as matrix metalloproteinase inhibitor and in apoptosis has widely attracted attention in biological field.
View Article and Find Full Text PDFBackground: Colorectal cancer is the third most-common cancer and the second most-common cause of cancer related death in UK. Although chemotherapy plays significant role in the treatment of colorectal cancer, morbidity and mortality due to drug resistance and cancer metastasis are yet to be eliminated. Recently, doxycycline has been reported to have cytotoxic and anti-proliferating properties in various cancer cells.
View Article and Find Full Text PDFSynthetic grafts, namely expanded polytetrafluoroethlene (ePTFE) and poly(ethylene terephthalate) (Dacron), used for cardiovascular bypass surgery are thrombogenic. Lining the inner lumen ("seeding") of synthetic grafts with endothelial cells (ECs) increases patency rates similar to those of autologous grafts (e.g.
View Article and Find Full Text PDFOxidative stress has an important role in the pathogenesis of many muscle diseases. The major contributors to oxidative stress in muscle tissue are reactive oxygen species such as oxygen ions, free radicals, and peroxides. Insulin-like growth factor I (IGF-I) has been shown to increase muscle mass and promote muscle cell proliferation, differentiation, and survival.
View Article and Find Full Text PDFBiotechnol Appl Biochem
December 2009
Background: Colorectal cancer is the third most common cancer in the western world. Chemotherapy is often ineffective to treat the advanced colorectal cancers due to the chemo-resistance. A major contributor to chemo-resistance is tumour-derived inhibition or avoidance of apoptosis.
View Article and Find Full Text PDFColorectal cancer (CRC) is characterized by the partial suppression of apoptosis, which in turn gives tumours a selective advantage for survival and can cause current chemotherapy approaches to be ineffective. Recent progress in understanding the mechanisms of apoptosis in colorectal carcinogenesis has provided potential new targets for therapy. Here, we review recent studies of the regulation of apoptosis and its role in CRC initiation and progression, and we discuss the relationship between chemoresistance and the suppression of apoptosis.
View Article and Find Full Text PDFIn this study, endothelial cell (EC)-seeded nanocomposite grafts were preconditioned with 1-2 dynes/cm(2) in vitro to establish whether low shear stress resulted in improved cell adherence prior to physiological shear stress (15 dynes/cm(2)). Alamar blue cell viability was assessed. Polymerase chain reaction was conducted for glyceraldehyde-3-phosphate dehydrogenase, transforming growth factor beta-1 (TGFbeta-1), vascular endothelial growth factor receptor-1 (VEGFR-1), platelet EC adhesion molecule-1, and vascular endothelial growth factor receptor-2 (VEGFR-2).
View Article and Find Full Text PDFBackground: In recent years, apart from antibacterial properties, doxycycline is reported to have cytotoxic and anti-proliferative actions in various cancers including colorectal cancer. Colorectal cancer constitutes one of the most common cancers in the western population. Apart from surgery, chemotherapy plays crucial role in the treatment of colorectal cancer.
View Article and Find Full Text PDFThe development of biocompatible polymers has greatly advanced the field of tissue engineering. Some tissues can be propagated on a nondegradable scaffold. Tissue such as cartilage, however, is a complex tissue in which the chondrocytes require their own synthesized extracellular matrix (ECM) to function.
View Article and Find Full Text PDFBackground: The resistance of tumour cells to apoptosis is a major contributor to the limited effectiveness of chemotherapies. Insulin-like growth factor I (IGF-I) has potential to protect cancer cells from variety of apoptotic challenges. This study was carried out to investigate the effect of a novel IGF-I receptor antagonist on apoptosis in colon cancer cells.
View Article and Find Full Text PDFThe integrin family of cell surface receptors were principally thought to be involved in cell adhesion. Intense study has shown that these glycoproteins also regulate a diverse range of physiological processes. Inappropriate activation of integrins has been implicated in many pathological processes.
View Article and Find Full Text PDFDefinite evidence of the importance of cancer stem cells in the progression of cancer has now come to light. Key markers of these cells have been identified in many solid tumours as well as leukaemias. Specific studies modelling the tumour induction of specific cells isolated by surface antigens such as CD44 have demonstrated that these cells are not only present in tumours but that they are the key units in their tumourgenecity.
View Article and Find Full Text PDFFor over 30 years, stem cells have been used in the replenishment of blood and immune systems damaged by the cancer cells or during treatment of cancer by chemotherapy or radiotherapy. Apart from their use in the immuno-reconstitution, the stem cells have been reported to contribute in the tissue regeneration and as delivery vehicles in the cancer treatments. The recent concept of 'cancer stem cells' has directed scientific communities towards a different wide new area of research field and possible potential future treatment modalities for the cancer.
View Article and Find Full Text PDFInsulin-like growth factors are known to inhibit apoptosis and promote tumour angiogenesis. Previously we have shown that insulin-like growth factor binding protein-4 (IGFBP-4) gene therapy increased apoptosis and decreased mitosis in colon cancer. In this experiment we used HT-29 colon cancer cells to induce subcutaneous cancers in nude mice and administered either the mammalian expression vector with IGFBP-4 insert or vector only around the tumour site.
View Article and Find Full Text PDF