Publications by authors named "Kevin S Dingwell"

Members of the casein kinase 1 (CK1) family of serine-threonine protein kinases are implicated in the regulation of many cellular processes, including the cell cycle, circadian rhythms, and Wnt and Hedgehog signaling. Because these kinases exhibit constitutive activity in biochemical assays, it is likely that their activity in cells is controlled by subcellular localization, interactions with inhibitory proteins, targeted degradation, or combinations of these mechanisms. We identified members of the FAM83 family of proteins as partners of CK1 in cells.

View Article and Find Full Text PDF

The animal cap explant is a simple but adaptable tool available to developmental biologists. The use of animal cap explants in demonstrating the presence of mesoderm-inducting activity in the embryo vegetal pole is one of many elegant examples of their worth. Animal caps respond to a range of growth factors (e.

View Article and Find Full Text PDF

The BMP and Wnt signalling pathways determine axis specification during embryonic development. Our previous work has shown that PAWS1 (also known as FAM83G) interacts with SMAD1 and modulates BMP signalling. Here, surprisingly, we show that overexpression of PAWS1 in embryos activates Wnt signalling and causes complete axis duplication.

View Article and Find Full Text PDF

DNA replication in the embryo of Xenopus laevis changes dramatically at the mid-blastula transition (MBT), with Y RNA-independent random initiation switching to Y RNA-dependent initiation at specific origins. Here, we identify xNuRD, an MTA2-containing assemblage of the nucleosome remodeling and histone deacetylation complex NuRD, as an essential factor in pre-MBT Xenopus embryos that overcomes a functional requirement for Y RNAs during DNA replication. Human NuRD complexes have a different subunit composition than xNuRD and do not support Y RNA-independent initiation of DNA replication.

View Article and Find Full Text PDF

Our previous studies of PAWS1 (protein associated with SMAD1; also known as FAM83G) have suggested that this molecule has roles beyond BMP signalling. To investigate these roles, we have used CRISPR/Cas9 to generate PAWS1-knockout U2OS osteosarcoma cells. Here, we show that PAWS1 plays a role in the regulation of the cytoskeletal machinery, including actin and focal adhesion dynamics, and cell migration.

View Article and Find Full Text PDF

Epithelia function as barriers against environmental insults and express the transcription factor aryl hydrocarbon receptor (AhR). However, AhR function in these tissues is unknown. Here we show that AhR regulates multiciliogenesis in both murine airway epithelia and in Xenopus laevis epidermis.

View Article and Find Full Text PDF

The regulated turnover of endoplasmic reticulum (ER)-resident membrane proteins requires their extraction from the membrane lipid bilayer and subsequent proteasome-mediated degradation. Cleavage within the transmembrane domain provides an attractive mechanism to facilitate protein dislocation but has never been shown for endogenous substrates. To determine whether intramembrane proteolysis, specifically cleavage by the intramembrane-cleaving aspartyl protease signal peptide peptidase (SPP), is involved in this pathway, we generated an SPP-specific somatic cell knockout.

View Article and Find Full Text PDF

Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) control multiple cellular processes in embryos and adult tissues. BMPs signal through the activation of type I BMP receptor kinases, which then phosphorylate SMADs 1/5/8. In the canonical pathway, this triggers the association of these SMADs with SMAD4 and their translocation to the nucleus, where they regulate gene expression.

View Article and Find Full Text PDF

Signalling by members of the FGF family is required for induction and maintenance of the mesoderm during amphibian development. One of the downstream effectors of FGF is the SRF-interacting Ets family member Elk-1, which, after phosphorylation by MAP kinase, activates the expression of immediate-early genes. Here, we show that Xenopus Elk-1 is phosphorylated in response to FGF signalling in a dynamic pattern throughout the embryo.

View Article and Find Full Text PDF

Tes is a member of an emerging family of proteins sharing a set of protein motifs referred to as PET-LIM domains. PET-LIM proteins such as Prickle regulate cell behavior during gastrulation in Xenopus and zebrafish, and to ask whether Tes is also involved in controlling cell behavior, we isolated its Xenopus orthologue. Xtes is expressed as a maternal transcript that is maintained at low levels until neurula stages when expression is elevated in the head and axial structures.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont4emh4bo4p4j0m0t35h1i5dlb4kpppqi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once