Quantum computation presents a powerful new paradigm for information processing. A robust universal quantum computer can be realized with any well controlled quantum system, but a successful platform will ultimately require the combination of highly coherent, error-correctable quantum elements with at least one entangling operation between them. Quantum information stored in a continuous-variable system-for example, a harmonic oscillator-can take advantage of hardware-efficient quantum error correction protocols that encode information in the large available Hilbert space of each element.
View Article and Find Full Text PDFA quantum computer has the potential to efficiently solve problems that are intractable for classical computers. However, constructing a large-scale quantum processor is challenging because of the errors and noise that are inherent in real-world quantum systems. One approach to addressing this challenge is to utilize modularity-a strategy used frequently in nature and engineering to build complex systems robustly.
View Article and Find Full Text PDF