Tumor progression is driven by the accumulation of genetic alterations, including both point mutations and copy number changes. Understanding the temporal sequence of these events is crucial for comprehending the disease but is not directly discernible from cross-sectional genomic data. Cancer progression models, including Mutual Hazard Networks (MHNs), aim to reconstruct the dynamics of tumor progression by learning the causal interactions between genetic events based on their co-occurrence patterns in cross-sectional data.
View Article and Find Full Text PDFMotivation: Metastasis formation is a hallmark of cancer lethality. Yet, metastases are generally unobservable during their early stages of dissemination and spread to distant organs. Genomic datasets of matched primary tumors and metastases may offer insights into the underpinnings and the dynamics of metastasis formation.
View Article and Find Full Text PDF