The near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth's volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measured noble gas and nitrogen isotopes in Ryugu samples and found that they are dominated by presolar and primordial components, incorporated during Solar System formation.
View Article and Find Full Text PDFTo characterize the ATLO (Assembly, Test, and Launch Operations) environment of the OSIRIS-REx spacecraft, we analyzed 17 aluminum witness foils and two blanks for bacterial, archaeal, fungal, and arthropod DNA. Under NASA's Planetary Protection guidelines, OSIRIS-REx is a Category II outbound, Category V unrestricted sample return mission. As a result, it has no bioburden restrictions.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
May 2017
Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the Pb-Pb age of the silicophosphates, 4568 ± 20 Ma.
View Article and Find Full Text PDFOrig Life Evol Biosph
September 2015
A large class of elements, referred to as the siderophile (iron-loving) elements, in the Earth's mantle can be explained by an early deep magma ocean on the early Earth in which the mantle equilibrated with metallic liquid (core liquid). This stage would have affected the distribution of some of the classic volatile elements that are also essential ingredients for life and biochemistry - H, C, S, and N. Estimates are made of the H, C, S, and N contents of Earth's early mantle after core formation, considering the effects of variable temperature, pressure, oxygen fugacity, and composition on their partitioning.
View Article and Find Full Text PDFA long-standing question in the planetary sciences asks what the Earth is made of. For historical reasons, volatile-depleted primitive materials similar to current chondritic meteorites were long considered to provide the 'building blocks' of the terrestrial planets. But material from the Earth, Mars, comets and various meteorites have Mg/Si and Al/Si ratios, oxygen-isotope ratios, osmium-isotope ratios and D/H, Ar/H2O and Kr/Xe ratios such that no primitive material similar to the Earth's mantle is currently represented in our meteorite collections.
View Article and Find Full Text PDF