Avocado consumption is associated with numerous health benefits. Avocadyne is a terminally unsaturated, 17-carbon long acetogenin found almost exclusively in avocados with noted anti-leukemia and anti-viral properties. In this study, specific structural features such as the terminal triple bond, odd number of carbons, and stereochemistry are shown to be critical to its ability to suppress mitochondrial fatty acid oxidation and impart selective activity in vitro and in vivo.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) cells have an atypical metabolic phenotype characterized by increased mitochondrial mass, as well as a greater reliance on oxidative phosphorylation and fatty acid oxidation (FAO) for survival. To exploit this altered metabolism, we assessed publicly available databases to identify FAO enzyme overexpression. Very long chain acyl-CoA dehydrogenase (VLCAD; ACADVL) was found to be overexpressed and critical to leukemia cell mitochondrial metabolism.
View Article and Find Full Text PDFScope: The effects of an avocado-derived fatty acid oxidation (FAO) inhibitor, avocatin B (AvoB), on glucose and lipid metabolism in models of diet-induced obesity (DIO) and in vitro models of lipotoxicity are evaluated. The safety of its oral consumption in humans is also determined.
Methods And Results: Mice are given high-fat diets (HFD) for 8 weeks.
In addition to the psychoactive constituents that are typically associated with Cannabis sativa L., there exist numerous other specialized metabolites in this plant that are believed to contribute to its medicinal versatility. This study focused on two such compounds, known as cannflavin A and cannflavin B.
View Article and Find Full Text PDFThe widespread occurrence of polyprenols throughout the plant kingdom is well documented, yet their functional role is poorly understood. These lipophilic compounds are known to be assembled from isoprenoid precursors by a class of enzymes designated as cis-prenyltransferases (CPTs), which are encoded by small CPT gene families in plants. In this study, we report that RNA interference (RNAi)-mediated knockdown of one member of the tomato CPT family (SlCPT5) reduced polyprenols in leaves by about 70%.
View Article and Find Full Text PDFPlants accumulate a family of hydrophobic polymers known as polyprenols, yet how they are synthesized, where they reside in the cell, and what role they serve is largely unknown. Using as a model, we present evidence for the involvement of a plastidial -prenyltransferase (AtCPT7) in polyprenol synthesis. Gene inactivation and RNAi-mediated knockdown of eliminated leaf polyprenols, while its overexpression increased their content.
View Article and Find Full Text PDF